Zong Nansu, Wen Andrew, Stone Daniel J, Sharma Deepak K, Wang Chen, Yu Yue, Liu Hongfang, Shi Qian, Jiang Guoqian
Department of Health Sciences Research, Mayo Clinic, Rochester, MN.
JCO Clin Cancer Inform. 2020 Mar;4:201-209. doi: 10.1200/CCI.19.00116.
The Fast Healthcare Interoperability Resources (FHIR) is emerging as a next-generation standards framework developed by HL7 for exchanging electronic health care data. The modeling capability of FHIR in standardizing cancer data has been gaining increasing attention by the cancer research informatics community. However, few studies have been conducted to examine the capability of FHIR in electronic data capture (EDC) applications for effective cancer clinical trials. The objective of this study was to design, develop, and evaluate an FHIR-based method that enables the automation of the case report forms (CRFs) population for cancer clinical trials using real-world electronic health records (EHRs).
We developed an FHIR-based computational pipeline of EDC with a case study for modeling colorectal cancer trials. We first leveraged an existing FHIR-based cancer profile to represent EHR data of patients with colorectal cancer, and then we used the FHIR Questionnaire and QuestionnaireResponse resources to represent the CRFs and their data population. To test the accuracy of and overall quality of the computational pipeline, we used synoptic reports of 287 Mayo Clinic patients with colorectal cancer from 2013 to 2019 with standard measures of precision, recall, and F1 score.
Using the computational pipeline, a total of 1,037 synoptic reports were successfully converted as the instances of the FHIR-based cancer profile. The average accuracy for converting all data elements (excluding tumor perforation) of the cancer profile was 0.99, using 200 randomly selected records. The average F1 score for populating nine questions of the CRFs in a real-world colorectal cancer trial was 0.95, using 100 randomly selected records.
We demonstrated that it is feasible to populate CRFs with EHR data in an automated manner with satisfactory performance. The outcome of the study provides helpful insight into future directions in implementing FHIR-based EDC applications for modern cancer clinical trials.
快速医疗保健互操作性资源(FHIR)正在成为由HL7开发的用于交换电子医疗数据的下一代标准框架。FHIR在标准化癌症数据方面的建模能力越来越受到癌症研究信息学界的关注。然而,很少有研究考察FHIR在电子数据捕获(EDC)应用于有效癌症临床试验方面的能力。本研究的目的是设计、开发和评估一种基于FHIR的方法,该方法能够使用真实世界电子健康记录(EHR)实现癌症临床试验病例报告表(CRF)填写的自动化。
我们开发了一个基于FHIR的EDC计算流程,并以结直肠癌试验建模为例进行研究。我们首先利用现有的基于FHIR的癌症概要文件来表示结直肠癌患者的EHR数据,然后使用FHIR问卷和问卷回复资源来表示CRF及其数据填写情况。为了测试计算流程的准确性和整体质量,我们使用了梅奥诊所2013年至2019年287例结直肠癌患者的概要报告,并采用了精确率、召回率和F1分数等标准指标。
使用该计算流程,总共1037份概要报告成功转换为基于FHIR的癌症概要文件实例。使用200条随机选择的记录,癌症概要文件所有数据元素(不包括肿瘤穿孔)转换的平均准确率为0.99。在一项真实世界的结直肠癌试验中,使用100条随机选择的记录,CRF九个问题填写的平均F1分数为0.95。
我们证明了以自动化方式用EHR数据填写CRF并获得令人满意的性能是可行的。该研究结果为未来实施基于FHIR的EDC应用于现代癌症临床试验提供了有益的见解。