Suppr超能文献

推进语义分割:具有注意力机制和可变形卷积的增强型U-Net算法

Advancing semantic segmentation: Enhanced UNet algorithm with attention mechanism and deformable convolution.

作者信息

Sahragard Effat, Farsi Hassan, Mohamadzadeh Sajad

机构信息

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran.

出版信息

PLoS One. 2025 Jan 16;20(1):e0305561. doi: 10.1371/journal.pone.0305561. eCollection 2025.

Abstract

This paper presents a novel method for improving semantic segmentation performance in computer vision tasks. Our approach utilizes an enhanced UNet architecture that leverages an improved ResNet50 backbone. We replace the last layer of ResNet50 with deformable convolution to enhance feature representation. Additionally, we incorporate an attention mechanism, specifically ECA-ASPP (Attention Spatial Pyramid Pooling), in the encoding path of UNet to capture multi-scale contextual information effectively. In the decoding path of UNet, we explore the use of attention mechanisms after concatenating low-level features with high-level features. Specifically, we investigate two types of attention mechanisms: ECA (Efficient Channel Attention) and LKA (Large Kernel Attention). Our experiments demonstrate that incorporating attention after concatenation improves segmentation accuracy. Furthermore, we compare the performance of ECA and LKA modules in the decoder path. The results indicate that the LKA module outperforms the ECA module. This finding highlights the importance of exploring different attention mechanisms and their impact on segmentation performance. To evaluate the effectiveness of the proposed method, we conduct experiments on benchmark datasets, including Stanford and Cityscapes, as well as the newly introduced WildPASS and DensPASS datasets. Based on our experiments, the proposed method achieved state-of-the-art results including mIoU 85.79 and 82.25 for the Stanford dataset, and the Cityscapes dataset, respectively. The results demonstrate that our proposed method performs well on these datasets, achieving state-of-the-art results with high segmentation accuracy.

摘要

本文提出了一种用于提高计算机视觉任务中语义分割性能的新方法。我们的方法利用了一种增强的UNet架构,该架构采用了改进的ResNet50主干。我们用可变形卷积替换了ResNet50的最后一层,以增强特征表示。此外,我们在UNet的编码路径中引入了一种注意力机制,具体为ECA-ASPP(注意力空间金字塔池化),以有效捕捉多尺度上下文信息。在UNet的解码路径中,我们探索了在将低级特征与高级特征连接后使用注意力机制。具体来说,我们研究了两种注意力机制:ECA(高效通道注意力)和LKA(大内核注意力)。我们的实验表明,在连接后引入注意力可提高分割精度。此外,我们比较了解码器路径中ECA和LKA模块的性能。结果表明,LKA模块优于ECA模块。这一发现凸显了探索不同注意力机制及其对分割性能影响的重要性。为了评估所提方法的有效性,我们在基准数据集上进行了实验,包括斯坦福和城市景观数据集,以及新引入的WildPASS和DensPASS数据集。基于我们的实验,所提方法分别在斯坦福数据集和城市景观数据集上取得了85.79和82.25的mIoU等领先成果。结果表明,我们提出的方法在这些数据集上表现良好,以高分割精度取得了领先成果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/944d/11737789/1fbaab8710f5/pone.0305561.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验