Department of Computer Science and Engineering, Jadavpur University, Kolkata, India.
Department of Electrical Engineering, Jadavpur University, Kolkata, India.
PLoS One. 2024 May 31;19(5):e0303670. doi: 10.1371/journal.pone.0303670. eCollection 2024.
Breast cancer remains a critical global concern, underscoring the urgent need for early detection and accurate diagnosis to improve survival rates among women. Recent developments in deep learning have shown promising potential for computer-aided detection (CAD) systems to address this challenge. In this study, a novel segmentation method based on deep learning is designed to detect tumors in breast ultrasound images. Our proposed approach combines two powerful attention mechanisms: the novel Positional Convolutional Block Attention Module (PCBAM) and Shifted Window Attention (SWA), integrated into a Residual U-Net model. The PCBAM enhances the Convolutional Block Attention Module (CBAM) by incorporating the Positional Attention Module (PAM), thereby improving the contextual information captured by CBAM and enhancing the model's ability to capture spatial relationships within local features. Additionally, we employ SWA within the bottleneck layer of the Residual U-Net to further enhance the model's performance. To evaluate our approach, we perform experiments using two widely used datasets of breast ultrasound images and the obtained results demonstrate its capability in accurately detecting tumors. Our approach achieves state-of-the-art performance with dice score of 74.23% and 78.58% on BUSI and UDIAT datasets, respectively in segmenting the breast tumor region, showcasing its potential to help with precise tumor detection. By leveraging the power of deep learning and integrating innovative attention mechanisms, our study contributes to the ongoing efforts to improve breast cancer detection and ultimately enhance women's survival rates. The source code of our work can be found here: https://github.com/AyushRoy2001/DAUNet.
乳腺癌仍然是一个全球性的重大问题,突显了迫切需要早期检测和准确诊断,以提高女性的生存率。深度学习的最新发展表明,计算机辅助检测 (CAD) 系统具有很大的潜力,可以应对这一挑战。在这项研究中,设计了一种基于深度学习的新分割方法,用于检测乳腺超声图像中的肿瘤。我们提出的方法结合了两种强大的注意力机制:新的位置卷积块注意力模块 (PCBAM) 和移位窗口注意力 (SWA),集成到 Residual U-Net 模型中。PCBAM 通过引入位置注意力模块 (PAM) 增强了卷积块注意力模块 (CBAM),从而提高了 CBAM 捕获的上下文信息,并增强了模型捕获局部特征内空间关系的能力。此外,我们在 Residual U-Net 的瓶颈层中使用 SWA,进一步提高了模型的性能。为了评估我们的方法,我们使用两个广泛使用的乳腺超声图像数据集进行实验,结果表明它能够准确地检测肿瘤。我们的方法在 BUSI 和 UDIAT 数据集上的分割乳腺肿瘤区域的骰子分数分别达到了 74.23%和 78.58%,达到了最新水平,展示了其在精确肿瘤检测方面的潜力。通过利用深度学习的力量并集成创新的注意力机制,我们的研究有助于提高乳腺癌检测的水平,并最终提高女性的生存率。我们工作的源代码可以在这里找到:https://github.com/AyushRoy2001/DAUNet。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020-7
J Imaging Inform Med. 2024-8
J Xray Sci Technol. 2019
Int J Comput Assist Radiol Surg. 2023-8
BMC Med Imaging. 2024-7-19
Comput Methods Programs Biomed. 2024-5
J Imaging Inform Med. 2025-2-28
Biomed Eng Lett. 2024-10-18
IEEE J Biomed Health Inform. 2023-9
Comput Biol Med. 2023-3
Diagnostics (Basel). 2022-12-30
IEEE Trans Med Imaging. 2023-5
Comput Methods Programs Biomed. 2022-11