文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

DAU-Net:用于乳腺超声图像中肿瘤分割的双注意力辅助 U-Net。

DAU-Net: Dual attention-aided U-Net for segmenting tumor in breast ultrasound images.

机构信息

Department of Computer Science and Engineering, Jadavpur University, Kolkata, India.

Department of Electrical Engineering, Jadavpur University, Kolkata, India.

出版信息

PLoS One. 2024 May 31;19(5):e0303670. doi: 10.1371/journal.pone.0303670. eCollection 2024.


DOI:10.1371/journal.pone.0303670
PMID:38820462
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11142567/
Abstract

Breast cancer remains a critical global concern, underscoring the urgent need for early detection and accurate diagnosis to improve survival rates among women. Recent developments in deep learning have shown promising potential for computer-aided detection (CAD) systems to address this challenge. In this study, a novel segmentation method based on deep learning is designed to detect tumors in breast ultrasound images. Our proposed approach combines two powerful attention mechanisms: the novel Positional Convolutional Block Attention Module (PCBAM) and Shifted Window Attention (SWA), integrated into a Residual U-Net model. The PCBAM enhances the Convolutional Block Attention Module (CBAM) by incorporating the Positional Attention Module (PAM), thereby improving the contextual information captured by CBAM and enhancing the model's ability to capture spatial relationships within local features. Additionally, we employ SWA within the bottleneck layer of the Residual U-Net to further enhance the model's performance. To evaluate our approach, we perform experiments using two widely used datasets of breast ultrasound images and the obtained results demonstrate its capability in accurately detecting tumors. Our approach achieves state-of-the-art performance with dice score of 74.23% and 78.58% on BUSI and UDIAT datasets, respectively in segmenting the breast tumor region, showcasing its potential to help with precise tumor detection. By leveraging the power of deep learning and integrating innovative attention mechanisms, our study contributes to the ongoing efforts to improve breast cancer detection and ultimately enhance women's survival rates. The source code of our work can be found here: https://github.com/AyushRoy2001/DAUNet.

摘要

乳腺癌仍然是一个全球性的重大问题,突显了迫切需要早期检测和准确诊断,以提高女性的生存率。深度学习的最新发展表明,计算机辅助检测 (CAD) 系统具有很大的潜力,可以应对这一挑战。在这项研究中,设计了一种基于深度学习的新分割方法,用于检测乳腺超声图像中的肿瘤。我们提出的方法结合了两种强大的注意力机制:新的位置卷积块注意力模块 (PCBAM) 和移位窗口注意力 (SWA),集成到 Residual U-Net 模型中。PCBAM 通过引入位置注意力模块 (PAM) 增强了卷积块注意力模块 (CBAM),从而提高了 CBAM 捕获的上下文信息,并增强了模型捕获局部特征内空间关系的能力。此外,我们在 Residual U-Net 的瓶颈层中使用 SWA,进一步提高了模型的性能。为了评估我们的方法,我们使用两个广泛使用的乳腺超声图像数据集进行实验,结果表明它能够准确地检测肿瘤。我们的方法在 BUSI 和 UDIAT 数据集上的分割乳腺肿瘤区域的骰子分数分别达到了 74.23%和 78.58%,达到了最新水平,展示了其在精确肿瘤检测方面的潜力。通过利用深度学习的力量并集成创新的注意力机制,我们的研究有助于提高乳腺癌检测的水平,并最终提高女性的生存率。我们工作的源代码可以在这里找到:https://github.com/AyushRoy2001/DAUNet。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/8a506696d089/pone.0303670.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/372490e018a2/pone.0303670.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/dc119d965de3/pone.0303670.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/c71af3258170/pone.0303670.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/53bb68b1ed13/pone.0303670.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/80bd627b4296/pone.0303670.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/0082fea35a77/pone.0303670.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/8a506696d089/pone.0303670.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/372490e018a2/pone.0303670.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/dc119d965de3/pone.0303670.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/c71af3258170/pone.0303670.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/53bb68b1ed13/pone.0303670.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/80bd627b4296/pone.0303670.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/0082fea35a77/pone.0303670.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f9/11142567/8a506696d089/pone.0303670.g007.jpg

相似文献

[1]
DAU-Net: Dual attention-aided U-Net for segmenting tumor in breast ultrasound images.

PLoS One. 2024

[2]
A deep learning-based method for the detection and segmentation of breast masses in ultrasound images.

Phys Med Biol. 2024-7-26

[3]
Channel Attention Module With Multiscale Grid Average Pooling for Breast Cancer Segmentation in an Ultrasound Image.

IEEE Trans Ultrason Ferroelectr Freq Control. 2020-7

[4]
HBMD-Net: Feature Fusion Based Breast Cancer Classification with Class Imbalance Resolution.

J Imaging Inform Med. 2024-8

[5]
FMRNet: A fused network of multiple tumoral regions for breast tumor classification with ultrasound images.

Med Phys. 2022-1

[6]
New one-step model of breast tumor locating based on deep learning.

J Xray Sci Technol. 2019

[7]
A hybrid attentional guidance network for tumors segmentation of breast ultrasound images.

Int J Comput Assist Radiol Surg. 2023-8

[8]
Attention based UNet model for breast cancer segmentation using BUSI dataset.

Sci Rep. 2024-9-28

[9]
STC-UNet: renal tumor segmentation based on enhanced feature extraction at different network levels.

BMC Med Imaging. 2024-7-19

[10]
MOB-CBAM: A dual-channel attention-based deep learning generalizable model for breast cancer molecular subtypes prediction using mammograms.

Comput Methods Programs Biomed. 2024-5

引用本文的文献

[1]
Multi-attention Mechanism for Enhanced Pseudo-3D Prostate Zonal Segmentation.

J Imaging Inform Med. 2025-2-28

[2]
Innovative breast cancer detection using a segmentation-guided ensemble classification framework.

Biomed Eng Lett. 2024-10-18

本文引用的文献

[1]
DBU-Net: Dual branch U-Net for tumor segmentation in breast ultrasound images.

PLoS One. 2023

[2]
Joint localization and classification of breast masses on ultrasound images using an auxiliary attention-based framework.

Med Image Anal. 2023-12

[3]
MRL-Net: Multi-Scale Representation Learning Network for COVID-19 Lung CT Image Segmentation.

IEEE J Biomed Health Inform. 2023-9

[4]
A novel medical image segmentation approach by using multi-branch segmentation network based on local and global information synchronous learning.

Sci Rep. 2023-4-25

[5]
HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation.

Comput Biol Med. 2023-3

[6]
ST-Unet: Swin Transformer boosted U-Net with Cross-Layer Feature Enhancement for medical image segmentation.

Comput Biol Med. 2023-2

[7]
A Multi-Stage Approach to Breast Cancer Classification Using Histopathology Images.

Diagnostics (Basel). 2022-12-30

[8]
AAU-Net: An Adaptive Attention U-Net for Breast Lesions Segmentation in Ultrasound Images.

IEEE Trans Med Imaging. 2023-5

[9]
Deep feature selection using local search embedded social ski-driver optimization algorithm for breast cancer detection in mammograms.

Neural Comput Appl. 2023

[10]
A novel MCF-Net: Multi-level context fusion network for 2D medical image segmentation.

Comput Methods Programs Biomed. 2022-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索