First Department of Medicine, University of Szeged, Szeged, Hungary.
Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary.
J Physiol. 2019 Dec;597(24):5879-5898. doi: 10.1113/JP278517. Epub 2019 Dec 1.
•Bile acids, ethanol and fatty acids affect pancreatic ductal fluid and bicarbonate secretion via mitochondrial damage, ATP depletion and calcium overload. •Pancreatitis-inducing factors open the membrane transition pore (mPTP) channel via cyclophilin D activation in acinar cells, causing calcium overload and cell death; genetic or pharmacological inhibition of mPTP improves the outcome of acute pancreatitis in animal models. •Here we show that genetic and pharmacological inhibition of mPTP protects mitochondrial homeostasis and cell function evoked by pancreatitis-inducing factors in pancreatic ductal cells. •The results also show that the novel cyclosporin A derivative NIM811 protects mitochondrial function in acinar and ductal cells, and it preserves bicarbonate transport mechanisms in pancreatic ductal cells. •We found that NIM811 is highly effective in different experimental pancreatitis models and has no side-effects. NIM811 is a highly suitable compound to be tested in clinical trials.
Mitochondrial dysfunction plays a crucial role in the development of acute pancreatitis (AP); however, no compound is currently available with clinically acceptable effectiveness and safety. In this study, we investigated the effects of a novel mitochondrial transition pore inhibitor, N-methyl-4-isoleucine cyclosporin (NIM811), in AP. Pancreatic ductal and acinar cells were isolated by enzymatic digestion from Bl/6 mice. In vitro measurements were performed by confocal microscopy and microfluorometry. Preventative effects of pharmacological [cylosporin A (2 µm), NIM811 (2 µm)] or genetic (Ppif /Cyp D KO) inhibition of the mitochondrial transition pore (mPTP) during the administration of either bile acids (BA) or ethanol + fatty acids (EtOH+FA) were examined. Toxicity of mPTP inhibition was investigated by detecting apoptosis and necrosis. In vivo effects of the most promising compound, NIM811 (5 or 10 mg kg per os), were checked in three different AP models induced by either caerulein (10 × 50 µg kg ), EtOH+FA (1.75 g kg ethanol and 750 mg kg palmitic acid) or 4% taurocholic acid (2 ml kg ). Both genetic and pharmacological inhibition of Cyp D significantly prevented the toxic effects of BA and EtOH+FA by restoring mitochondrial membrane potential (Δψ) and preventing the loss of mitochondrial mass. In vivo experiments revealed that per os administration of NIM811 has a protective effect in AP by reducing oedema, necrosis, leukocyte infiltration and serum amylase level in AP models. Administration of NIM811 had no toxic effects. The novel mitochondrial transition pore inhibitor NIM811 thus seems to be an exceptionally good candidate compound for clinical trials in AP.
胆汁酸、乙醇和脂肪酸通过线粒体损伤、ATP 耗竭和钙超载影响胰腺导管液和碳酸氢盐分泌。
诱导胰腺炎的因素通过环孢素 D 激活在腺泡细胞中打开膜转运孔(mPTP)通道,导致钙超载和细胞死亡;mPTP 的遗传或药理学抑制可改善动物模型中急性胰腺炎的结局。
我们发现 mPTP 的遗传和药理学抑制可保护胰腺导管细胞中诱导胰腺炎的因素引起的线粒体稳态和细胞功能。
结果还表明,新型环孢菌素 A 衍生物 NIM811 可保护腺泡和导管细胞中的线粒体功能,并可维持胰腺导管细胞中的碳酸氢盐转运机制。
我们发现 NIM811 在不同的实验性胰腺炎模型中非常有效,且没有副作用。NIM811 是一种非常适合在临床试验中测试的化合物。
线粒体功能障碍在急性胰腺炎(AP)的发展中起着关键作用;然而,目前尚无具有临床可接受的有效性和安全性的化合物。在这项研究中,我们研究了新型线粒体转运孔抑制剂 N-甲基-4-异亮氨酸环孢菌素(NIM811)在 AP 中的作用。通过酶消化从 Bl/6 小鼠中分离胰腺导管和腺泡细胞。通过共聚焦显微镜和微荧光计进行体外测量。在给予胆汁酸(BA)或乙醇+脂肪酸(EtOH+FA)时,研究了药理学[环孢菌素 A(2 µm)、NIM811(2 µm)]或遗传(Ppif/Cyp D KO)抑制线粒体转运孔(mPTP)对预防的影响。通过检测细胞凋亡和坏死来研究 mPTP 抑制的毒性。通过给予 caerulein(10×50 µg/kg)、EtOH+FA(1.75 g/kg 乙醇和 750 mg/kg 棕榈酸)或 4%牛磺胆酸钠(2 ml/kg)三种不同的 AP 模型,检查最有希望的化合物 NIM811(5 或 10 mg/kg 口服)的体内作用。Cyp D 的遗传和药理学抑制均显著通过恢复线粒体膜电位(Δψ)和防止线粒体质量损失来预防 BA 和 EtOH+FA 的毒性作用。体内实验表明,NIM811 的口服给药通过降低 AP 模型中的水肿、坏死、白细胞浸润和血清淀粉酶水平,对 AP 具有保护作用。给予 NIM811 没有毒性作用。新型线粒体转运孔抑制剂 NIM811 似乎是 AP 临床试验的一个非常好的候选化合物。