Bae Hyunji Jane, Lozano-Durán Adrián, Bose Sanjeeb T, Moin Parviz
Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA.
Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.
J Fluid Mech. 2019 Jan 25;859:400-432. doi: 10.1017/jfm.2018.838.
Wall modelling in large-eddy simulation (LES) is necessary to overcome the prohibitive near-wall resolution requirements in high-Reynolds-number turbulent flows. Most existing wall models rely on assumptions about the state of the boundary layer and require prescription of tunable coefficients. They also impose the predicted wall stress by replacing the no-slip boundary condition at the wall with a Neumann boundary condition in the wall-parallel directions while maintaining the no-transpiration condition in the wall-normal direction. In the present study, we first motivate and analyse the Robin (slip) boundary condition with transpiration (non-zero wall-normal velocity) in the context of wall-modelled LES. The effect of the slip boundary condition on the one-point statistics of the flow is investigated in LES of turbulent channel flow and a flat-plate turbulent boundary layer. It is shown that the slip condition provides a framework to compensate for the deficit or excess of mean momentum at the wall. Moreover, the resulting non-zero stress at the wall alleviates the well-known problem of the wall-stress under-estimation by current subgrid-scale (SGS) models (Jiménez & Moser, ., vol. 38 (4), 2000, pp. 605-612). Second, we discuss the requirements for the slip condition to be used in conjunction with wall models and derive the equation that connects the slip boundary condition with the stress at the wall. Finally, a dynamic procedure for the slip coefficients is formulated, providing a dynamic slip wall model free of specified coefficients. The performance of the proposed dynamic wall model is tested in a series of LES of turbulent channel flow at varying Reynolds numbers, non-equilibrium three-dimensional transient channel flow and a zero-pressure-gradient flat-plate turbulent boundary layer. The results show that the dynamic wall model is able to accurately predict one-point turbulence statistics for various flow configurations, Reynolds numbers and grid resolutions.
在大涡模拟(LES)中进行壁面建模对于克服高雷诺数湍流中近壁分辨率要求过高的问题是必要的。大多数现有的壁面模型依赖于关于边界层状态的假设,并且需要规定可调系数。它们还通过在壁面平行方向上用诺伊曼边界条件代替壁面处的无滑移边界条件,同时在壁面法向方向上保持无渗透条件来施加预测的壁面应力。在本研究中,我们首先在壁面建模LES的背景下,激发并分析具有渗透(非零壁面法向速度)的罗宾(滑移)边界条件。在湍流通道流和平板湍流边界层的LES中研究了滑移边界条件对流动单点统计量的影响。结果表明,滑移条件提供了一个框架,用于补偿壁面处平均动量的不足或过剩。此外,壁面处产生的非零应力缓解了当前亚网格尺度(SGS)模型中众所周知的壁面应力低估问题(希门尼斯和莫泽,《流体物理学》,第38卷(4),2000年,第605 - 612页)。其次,我们讨论了与壁面模型结合使用的滑移条件的要求,并推导了将滑移边界条件与壁面应力联系起来的方程。最后,制定了滑移系数的动态过程,提供了一个无需指定系数的动态滑移壁面模型。在一系列不同雷诺数的湍流通道流、非平衡三维瞬态通道流和零压力梯度平板湍流边界层的LES中测试了所提出的动态壁面模型的性能。结果表明,动态壁面模型能够准确预测各种流动配置、雷诺数和网格分辨率下的单点湍流统计量。