Suppr超能文献

散射相函数的修正几何截断

Modified Geometric Truncation of the Scattering Phase Function.

作者信息

Radkevich Alexander

机构信息

Science Systems and Applications, Inc., 1 Enterprise Pkwy, Hampton, VA, USA, 23666.

出版信息

J Quant Spectrosc Radiat Transf. 2018 Sep;217:155-169. doi: 10.1016/j.jqsrt.2018.05.029.

Abstract

Phase function of light scattering on large atmospheric particles has very strong peak in forward direction constituting a challenge for accurate numerical calculations of radiance required in remote sensing problems. Scaling transformation replaces original phase function with a sum of the delta function and a new regular smooth phase function. Geometric truncation is one of the ways to construct such a smooth function. The replacement phase function coincides with the original one outside the forward cone and preserves the asymmetry parameter. It has discontinuity at the cone. Another simple functional form of the replacement phase function within the cone is suggested. It enables continuity and allows for a number of modifications. Three of them are considered in this study: preserving asymmetry parameter, providing continuity of the 1 derivative of the phase function, and preserving mean scattering angle. Yet another problem addressed in this study is objective selection of the width of the forward cone. That angle affects truncation fraction and values of the phase function within the cone. A heuristic approach providing unambiguous criterion of selection of the truncation angle is proposed. The approach has easy numerical implementation. Suggested modifications were tested on cloud phase function using discrete ordinates and Monte Carlo methods. It was shown that the modifications provide better accuracy of the radiance computation compare to the original geometric truncation with discrete ordinates while continuous derivative approach provides significant gain in computer time with Monte Carlo simulations.

摘要

大气中大粒子的光散射相函数在向前方向有很强的峰值,这给遥感问题中所需辐射亮度的精确数值计算带来了挑战。尺度变换用一个狄拉克函数和一个新的规则光滑相函数的和来代替原来的相函数。几何截断是构造这种光滑函数的方法之一。替换后的相函数在向前锥体外与原相函数一致,并保留不对称参数。它在锥处有间断。本文提出了锥体内替换相函数的另一种简单函数形式。它实现了连续性,并允许进行多种修改。本研究考虑了其中三种:保留不对称参数、使相函数的一阶导数连续以及保留平均散射角。本研究解决的另一个问题是向前锥宽度的客观选择。该角度影响截断分数和锥体内相函数的值。提出了一种启发式方法,提供了截断角选择的明确标准。该方法具有易于数值实现的特点。使用离散坐标法和蒙特卡罗方法对云相函数进行了所建议修改的测试。结果表明,与使用离散坐标法的原始几何截断相比,这些修改提高了辐射亮度计算的精度,而连续导数方法在蒙特卡罗模拟中显著节省了计算时间。

相似文献

1
Modified Geometric Truncation of the Scattering Phase Function.散射相函数的修正几何截断
J Quant Spectrosc Radiat Transf. 2018 Sep;217:155-169. doi: 10.1016/j.jqsrt.2018.05.029.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验