Suppr超能文献

使用美国环境保护局国家雨水计算器管理径流估算中的不确定性。

Managing Uncertainty in Runoff Estimation with the U.S. Environmental Protection Agency National Stormwater Calculator.

作者信息

Schifman L A, Tryby M E, Berner J, Shuster W D

机构信息

Management Research Laboratory, U.S. Environmental Protection Agency, 26W. Martin Luther King Dr., Cincinnati, Ohio 45268; and Landscape.

National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Washington, D.C. 20460.

出版信息

J Am Water Resour Assoc. 2019;54(1):148-159. doi: 10.1111/1752-1688.12599.

Abstract

The U.S. Environmental Protection Agency National Stormwater Calculator (NSWC) simplifies the task of estimating runoff through a straightforward simulation process based on the EPA Stormwater Management Model. The NSWC accesses localized climate and soil hydrology data, and options to experiment with low-impact development (LID) features for parcels up to 5 ha in size. We discuss how the NSWC treats the urban hydrologic cycle and focus on the estimation uncertainty in soil hydrology and its impact on runoff simulation by comparing field-measured soil hydrologic data from 12 cities to corresponding NSWC estimates in three case studies. The default NSWC hydraulic conductivity is 10.1 mm/h, which underestimates conductivity measurements for New Orleans, Louisiana (95 ± 27 mm/h) and overestimates that for Omaha, Nebraska (3.0 ± 1.0 mm/h). Across all cities, the NSWC prediction, on average, underestimated hydraulic conductivity by 10.5 mm/h compared to corresponding measured values. In evaluating how LID interact with soil hydrology and runoff response, we found direct hydrologic interaction with pre-existing soil shows high sensitivity in runoff prediction, whereas LID isolated from soils show less impact. Simulations with LID on higher permeability soils indicate that nearly all of pre-LID runoff is treated; while features interacting with less-permeable soils treat only 50%. We highlight the NSWC as a screening-level tool for site runoff dynamics and its suitability in stormwater management.

摘要

美国环境保护局国家雨水计算器(NSWC)基于美国环保署雨水管理模型,通过简单直接的模拟过程简化了径流估算任务。NSWC可获取当地气候和土壤水文数据,并提供了对面积达5公顷地块的低影响开发(LID)特征进行试验的选项。我们讨论了NSWC如何处理城市水文循环,并通过在三个案例研究中将来自12个城市的现场实测土壤水文数据与相应的NSWC估算值进行比较,重点关注土壤水文估算的不确定性及其对径流模拟的影响。NSWC的默认水力传导率为10.1毫米/小时,该值低估了路易斯安那州新奥尔良市的传导率测量值(95±27毫米/小时),而高估了内布拉斯加州奥马哈市的测量值(3.0±1.0毫米/小时)。在所有城市中,与相应测量值相比,NSWC的预测平均低估水力传导率10.5毫米/小时。在评估LID如何与土壤水文和径流响应相互作用时,我们发现与现有土壤的直接水文相互作用在径流预测中表现出高敏感性,而与土壤隔离的LID影响较小。对高渗透性土壤进行LID模拟表明,几乎所有LID实施前的径流都得到了处理;而与低渗透性土壤相互作用的特征仅处理了50%的径流。我们强调NSWC作为场地径流动态筛选级工具及其在雨水管理中的适用性。

相似文献

2
Comparison of Measured and Simulated Urban Soil Hydrologic Properties.
J Hydrol Eng. 2019 Jan;24(1). doi: 10.1061/(ASCE)HE.1943-5584.0001684. Epub 2018 Oct 27.
4
Soil infiltration rates are underestimated by models in an urban watershed in central North Carolina, USA.
J Environ Manage. 2022 Jul 1;313:115004. doi: 10.1016/j.jenvman.2022.115004. Epub 2022 Apr 8.
5
Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment.
Int J Environ Res Public Health. 2018 Feb 5;15(2):273. doi: 10.3390/ijerph15020273.
6
Evaluation of the effects of low-impact development practices under different rainy types: case of Fuxing Island Park, Shanghai, China.
Environ Sci Pollut Res Int. 2019 Mar;26(7):6706-6716. doi: 10.1007/s11356-019-04129-x. Epub 2019 Jan 10.
7
An assessment of the hydrologic effectiveness of low impact development (LID) practices for managing runoff with different objectives.
J Environ Manage. 2019 Feb 1;231:504-514. doi: 10.1016/j.jenvman.2018.10.046. Epub 2018 Oct 26.
8
Enhancing a rainfall-runoff model to assess the impacts of BMPs and LID practices on storm runoff.
J Environ Manage. 2015 Jan 1;147:12-23. doi: 10.1016/j.jenvman.2014.09.005. Epub 2014 Sep 27.
9
Quantifying the stormwater runoff volume reduction benefits of urban street tree canopy.
Sci Total Environ. 2022 Feb 1;806(Pt 3):151296. doi: 10.1016/j.scitotenv.2021.151296. Epub 2021 Oct 28.

引用本文的文献

1
in an Urban World: New Contexts for Hydraulic Conductivity.
J Am Water Resour Assoc. 2021 Jun 2;57(3):493-504. doi: 10.1111/1752-1688.12918.
3
Comparison of Measured and Simulated Urban Soil Hydrologic Properties.
J Hydrol Eng. 2019 Jan;24(1). doi: 10.1061/(ASCE)HE.1943-5584.0001684. Epub 2018 Oct 27.
4
Realizing the opportunities of black carbon in urban soils: Implications for water quality management with green infrastructure.
Sci Total Environ. 2018 Dec 10;644:1027-1035. doi: 10.1016/j.scitotenv.2018.06.396. Epub 2018 Jul 11.

本文引用的文献

1
Factors Contributing to the Hydrologic Effectiveness of a Rain Garden Network (Cincinnati OH USA).
Infrastructures (Basel). 2017 Sep 6;2(3). doi: 10.3390/infrastructures2030011.
2
Situating Green Infrastructure in Context: A Framework for Adaptive Socio-Hydrology in Cities.
Water Resour Res. 2017 Dec 1;53(12):10139-10154. doi: 10.1002/2017WR020926.
3
Nematode Community Response to Green Infrastructure Design in a Semiarid City.
J Environ Qual. 2017 May;46(3):687-694. doi: 10.2134/jeq2016.11.0461.
4
Urbanization impacts on surface runoff of the contiguous United States.
J Environ Manage. 2017 Feb 1;187:470-481. doi: 10.1016/j.jenvman.2016.11.017. Epub 2016 Nov 13.
5
Transpiration of urban forests in the Los Angeles metropolitan area.
Ecol Appl. 2011 Apr;21(3):661-77. doi: 10.1890/09-1717.1.
6
Stormwater runoff quality and quantity from asphalt, paver, and crushed stone driveways in Connecticut.
Water Res. 2006 Feb;40(4):826-32. doi: 10.1016/j.watres.2005.12.006. Epub 2006 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验