Li Zhenxing, Wang Rui, Xue Jingjing, Xing Xiaofei, Yu Chengcheng, Huang Tianyi, Chu Junmei, Wang Kai-Li, Dong Chong, Wei Zhiting, Zhao Yepin, Wang Zhao-Kui, Yang Yang
State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization , China University of Petroleum (Beijing) , Beijing 102249 , China.
Department of Materials Science and Engineering , University of California , Los Angeles , California 90095 , United States.
J Am Chem Soc. 2019 Nov 6;141(44):17610-17616. doi: 10.1021/jacs.9b06796. Epub 2019 Oct 28.
The ideal charge transport materials should exhibit a proper energy level, high carrier mobility, sufficient conductivity, and excellent charge extraction ability. Here, a novel electron transport material was designed and synthesized by using a simple and facile solvothermal method, which is composed of the core-shell ZnO@SnO nanoparticles. Thanks to the good match between the energy level of the SnO shell and the high electron mobility of the core ZnO nanoparticles, the PCE of inorganic perovskite solar cells has reached 14.35% (: 16.45 mA cm, : 1.11 V, FF: 79%), acting core-shell ZnO@SnO nanoparticles as the electron transfer layer. The core-shell ZnO@SnO nanoparticles size is 8.1 nm with the SnO shell thickness of 3.4 nm, and the electron mobility is seven times more than SnO nanoparticles. Meanwhile, the uniform core-shell ZnO@SnO nanoparticles is extremely favorable to the growth of inorganic perovskite films. These preliminary results strongly suggest the great potential of this novel electron transfer material in high-efficiency perovskite solar cells.
理想的电荷传输材料应具有合适的能级、高载流子迁移率、足够的电导率和出色的电荷提取能力。在此,通过一种简单易行的溶剂热法设计并合成了一种新型电子传输材料,它由核壳结构的ZnO@SnO纳米颗粒组成。由于SnO壳层的能级与核心ZnO纳米颗粒的高电子迁移率之间的良好匹配,无机钙钛矿太阳能电池的光电转换效率(PCE)达到了14.35%(Jsc:16.45 mA cm,Voc:1.11 V,FF:79%),其中核壳结构的ZnO@SnO纳米颗粒用作电子传输层。核壳结构的ZnO@SnO纳米颗粒尺寸为8.1 nm,SnO壳层厚度为3.4 nm,其电子迁移率比SnO纳米颗粒高七倍。同时,均匀的核壳结构ZnO@SnO纳米颗粒对无机钙钛矿薄膜的生长极为有利。这些初步结果有力地表明了这种新型电子传输材料在高效钙钛矿太阳能电池中的巨大潜力。