Caleffi Matteo, Mariani Paolo, Bertoni Giovanni, Paolicelli Guido, Pasquali Luca, Agresti Antonio, Pescetelli Sara, Di Carlo Aldo, De Renzi Valentina, D'Addato Sergio
Dipartimento di Scienze Fisiche, Matematiche e Informatiche, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy.
CHOSE-Centre for Hybrid and Organic Solar Energy, Department of Electronics Engineering, University of Rome Tor Vergata, 00133 Rome, Italy.
Materials (Basel). 2021 Sep 23;14(19):5507. doi: 10.3390/ma14195507.
Nanocluster aggregation sources based on magnetron-sputtering represent precise and versatile means to deposit a controlled quantity of metal nanoparticles at selected interfaces. In this work, we exploit this methodology to produce Ag/MgO nanoparticles (NPs) and deposit them on a glass/FTO/TiO substrate, which constitutes the mesoscopic front electrode of a monolithic perovskite-based solar cell (PSC). Herein, the Ag NP growth through magnetron sputtering and gas aggregation, subsequently covered with MgO ultrathin layers, is fully characterized in terms of structural and morphological properties while thermal stability and endurance against air-induced oxidation are demonstrated in accordance with PSC manufacturing processes. Finally, once the NP coverage is optimized, the Ag/MgO engineered PSCs demonstrate an overall increase of 5% in terms of device power conversion efficiencies (up to 17.8%).
基于磁控溅射的纳米团簇聚集源是在选定界面精确且灵活地沉积可控数量金属纳米颗粒的手段。在这项工作中,我们利用这种方法制备了Ag/MgO纳米颗粒(NPs),并将其沉积在玻璃/FTO/TiO衬底上,该衬底构成了基于钙钛矿的单片太阳能电池(PSC)的介观前电极。在此,通过磁控溅射和气体聚集生长的Ag纳米颗粒随后覆盖有MgO超薄层,对其结构和形态特性进行了全面表征,同时根据PSC制造工艺证明了其热稳定性和抗空气诱导氧化的耐久性。最后,一旦纳米颗粒覆盖率得到优化,经过Ag/MgO工程处理的PSC在器件功率转换效率方面总体提高了5%(高达17.8%)。