Max Plank Institute for Mathematics in the Sciences, Leipzig, Germany.
Institut de Physique Théorique, CEA, CNRS-URA 2306, Gif-sur-Yvette, France.
Phys Rev E. 2019 Sep;100(3-1):032315. doi: 10.1103/PhysRevE.100.032315.
In the classic model of first-passage percolation, for pairs of vertices separated by a Euclidean distance L, geodesics exhibit deviations from their mean length L that are of order L^{χ}, while the transversal fluctuations, known as wandering, grow as L^{ξ}. We find that when weighting edges directly with their Euclidean span in various spatial network models, we have two distinct classes defined by different exponents ξ=3/5 and χ=1/5, or ξ=7/10 and χ=2/5, depending only on coarse details of the specific connectivity laws used. Also, the travel-time fluctuations are Gaussian, rather than Tracy-Widom, which is rarely seen in first-passage models. The first class contains proximity graphs such as the hard and soft random geometric graph, and the k-nearest neighbor random geometric graphs, where via Monte Carlo simulations we find ξ=0.60±0.01 and χ=0.20±0.01, showing a theoretical minimal wandering. The second class contains graphs based on excluded regions such as β skeletons and the Delaunay triangulation and are characterized by the values ξ=0.70±0.01 and χ=0.40±0.01, with a nearly theoretically maximal wandering exponent. We also show numerically that the so-called Kardar-Parisi-Zhang (KPZ) relation χ=2ξ-1 is satisfied for all these models. These results shed some light on the Euclidean first-passage process but also raise some theoretical questions about the scaling laws and the derivation of the exponent values and also whether a model can be constructed with maximal wandering, or non-Gaussian travel fluctuations, while embedded in space.
在经典的首次通过渗流模型中,对于通过欧几里得距离 L 分离的顶点对,测地线表现出与其平均长度 L 的偏离,其阶数为 L^{χ},而横向波动,即漫游,呈 L^{ξ}增长。我们发现,当在各种空间网络模型中直接用欧几里得跨度对边进行加权时,我们有两个不同的类别,由不同的指数 ξ=3/5 和 χ=1/5 或 ξ=7/10 和 χ=2/5 定义,具体取决于所使用的特定连接法则的粗糙细节。此外,渡越时间波动是高斯的,而不是 Tracy-Widom,这在首次通过模型中很少见。第一类包含邻近图,例如硬随机几何图和软随机几何图,以及 k-最近邻随机几何图,通过蒙特卡罗模拟,我们发现 ξ=0.60±0.01 和 χ=0.20±0.01,表现出理论上最小的漫游。第二类包含基于排除区域的图,例如β骨架和 Delaunay 三角剖分,其特征在于 ξ=0.70±0.01 和 χ=0.40±0.01,具有几乎理论上最大的漫游指数。我们还数值证明了所有这些模型都满足所谓的 Kardar-Parisi-Zhang (KPZ) 关系 χ=2ξ-1。这些结果不仅揭示了欧几里得首次通过过程的一些情况,还提出了一些关于标度律以及指数值的推导的理论问题,还提出了一个模型是否可以在空间中嵌入具有最大漫游或非高斯渡越波动的问题。