Suppr超能文献

拓扑位置和邻居信息对识别复杂网络中影响节点的综合影响。

Comprehensive influence of topological location and neighbor information on identifying influential nodes in complex networks.

机构信息

School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, China.

School of Data and Computer Science, Shandong Women's University, Jinan, China.

出版信息

PLoS One. 2021 May 21;16(5):e0251208. doi: 10.1371/journal.pone.0251208. eCollection 2021.

Abstract

Identifying the influential nodes of complex networks is now seen as essential for optimizing the network structure or efficiently disseminating information through networks. Most of the available methods determine the spreading capability of nodes based on their topological locations or the neighbor information, the degree of node is usually used to denote the neighbor information, and the k-shell is used to denote the locations of nodes, However, k-shell does not provide enough information about the topological connections and position information of the nodes. In this work, a new hybrid method is proposed to identify highly influential spreaders by not only considering the topological location of the node but also the neighbor information. The percentage of triangle structures is employed to measure both the connections among the neighbor nodes and the location of nodes, the contact distance is also taken into consideration to distinguish the interaction influence by different step neighbors. The comparison between our proposed method and some well-known centralities indicates that the proposed measure is more highly correlated with the real spreading process, Furthermore, another comprehensive experiment shows that the top nodes removed according to the proposed method are relatively quick to destroy the network than other compared semi-local measures. Our results may provide further insights into identifying influential individuals according to the structure of the networks.

摘要

识别复杂网络中的影响节点现在被认为是优化网络结构或通过网络有效传播信息的关键。现有的大多数方法都是基于节点的拓扑位置或邻居信息来确定节点的传播能力,节点的度通常用于表示邻居信息,而 k-shell 用于表示节点的位置。然而,k-shell 并没有提供足够的节点拓扑连接和位置信息。在这项工作中,提出了一种新的混合方法,通过不仅考虑节点的拓扑位置,还考虑邻居信息,来识别具有高度影响力的传播者。三角形结构的百分比用于衡量邻居节点之间的连接和节点的位置,还考虑了接触距离,以区分不同步邻居的交互影响。将我们提出的方法与一些著名的中心度进行比较表明,所提出的度量方法与真实传播过程的相关性更高。此外,另一个综合实验表明,根据所提出的方法删除的顶级节点比其他比较的半局部度量方法更快地破坏网络。我们的研究结果可能为根据网络结构识别有影响力的个体提供了更深入的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ba/8139458/b8404b1ac406/pone.0251208.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验