Suppr超能文献

用于更个性化血糖控制的 3D 核密度随机模型:开发和计算机模拟验证。

3D kernel-density stochastic model for more personalized glycaemic control: development and in-silico validation.

机构信息

Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.

GIGA-In Silico Medicine, University of Liège, Allée du 6 Août 19, Bât. B5a, 4000, Liège, Belgium.

出版信息

Biomed Eng Online. 2019 Oct 22;18(1):102. doi: 10.1186/s12938-019-0720-8.

Abstract

BACKGROUND

The challenges of glycaemic control in critically ill patients have been debated for 20 years. While glycaemic control shows benefits inter- and intra-patient metabolic variability results in increased hypoglycaemia and glycaemic variability, both increasing morbidity and mortality. Hence, current recommendations for glycaemic control target higher glycaemic ranges, guided by the fear of harm. Lately, studies have proven the ability to provide safe, effective control for lower, normoglycaemic, ranges, using model-based computerised methods. Such methods usually identify patient-specific physiological parameters to personalize titration of insulin and/or nutrition. The Stochastic-Targeted (STAR) glycaemic control framework uses patient-specific insulin sensitivity and a stochastic model of its future variability to directly account for both inter- and intra-patient variability in a risk-based insulin-dosing approach.

RESULTS

In this study, a more personalized and specific 3D version of the stochastic model used in STAR is compared to the current 2D stochastic model, both built using kernel-density estimation methods. Fivefold cross validation on 681 retrospective patient glycaemic control episodes, totalling over 65,000 h of control, is used to determine whether the 3D model better captures metabolic variability, and the potential gain in glycaemic outcome is assessed using validated virtual trials. Results show that the 3D stochastic model has similar forward predictive power, but provides significantly tighter, more patient-specific, prediction ranges, showing the 2D model over-conservative > 70% of the time. Virtual trial results show that overall glycaemic safety and performance are similar, but the 3D stochastic model reduced median blood glucose levels (6.3 [5.7, 7.0] vs. 6.2 [5.6, 6.9]) with a higher 61% vs. 56% of blood glucose within the 4.4-6.5 mmol/L range.

CONCLUSIONS

This improved performance is achieved with higher insulin rates and higher carbohydrate intake, but no loss in safety from hypoglycaemia. Thus, the 3D stochastic model developed better characterises patient-specific future insulin sensitivity dynamics, resulting in improved simulated glycaemic outcomes and a greater level of personalization in control. The results justify inclusion into ongoing clinical use of STAR.

摘要

背景

危重症患者的血糖控制挑战已经争论了 20 年。尽管血糖控制显示出益处,但患者个体代谢变异导致低血糖和血糖变异增加,这两者都会增加发病率和死亡率。因此,目前的血糖控制目标是更高的血糖范围,这是基于对伤害的恐惧。最近的研究证明,使用基于模型的计算机化方法,可以提供安全、有效的较低正常血糖范围的控制。这些方法通常识别患者特定的生理参数,以实现胰岛素和/或营养的个体化滴定。随机靶向(STAR)血糖控制框架使用患者特定的胰岛素敏感性和未来变异性的随机模型,直接在基于风险的胰岛素给药方法中考虑患者个体间和个体内的变异性。

结果

在这项研究中,与当前的 2D 随机模型相比,STAR 中使用的更个性化和特定的 3D 随机模型进行了比较,两者均使用核密度估计方法构建。对 681 例回顾性患者血糖控制发作进行五重交叉验证,总计超过 65000 小时的控制,以确定 3D 模型是否更好地捕捉代谢变异,并且使用经过验证的虚拟试验评估血糖结果的潜在增益。结果表明,3D 随机模型具有相似的正向预测能力,但提供了更紧密、更特定于患者的预测范围,显示 2D 模型在超过 70%的时间内过于保守。虚拟试验结果表明,整体血糖安全性和性能相似,但 3D 随机模型降低了中位血糖水平(6.3[5.7,7.0] vs.6.2[5.6,6.9]),61%的血糖水平在 4.4-6.5mmol/L 范围内,而 56%的血糖水平在 4.4-6.5mmol/L 范围内。

结论

这种改进的性能是通过更高的胰岛素率和更高的碳水化合物摄入实现的,但低血糖的安全性没有损失。因此,开发的 3D 随机模型更好地描述了患者特定的未来胰岛素敏感性动态,从而改善了模拟血糖结果,并在控制中实现了更高水平的个性化。结果证明该模型有理由纳入正在进行的 STAR 临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c38/6805453/46180ee942b5/12938_2019_720_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验