Thomas Felicity, Pretty Christopher G, Fisk Liam, Shaw Geoffrey M, Chase J Geoffrey, Desaive Thomas
Thermodynamics of Irreversible Processes, Institute of Physics, Allée du 6 Août, 17 (Bât B5), B4000 Liège, Belgium.
Biomed Eng Online. 2014 Apr 16;13:43. doi: 10.1186/1475-925X-13-43.
The metabolism of critically ill patients evolves dynamically over time. Post critical insult, levels of counter-regulatory hormones are significantly elevated, but decrease rapidly over the first 12-48 hours in the intensive care unit (ICU). These hormones have a direct physiological impact on insulin sensitivity (SI). Understanding the variability of SI is important for safely managing glycaemic levels and understanding the evolution of patient condition. The objective of this study is to assess the evolution of SI over the first two days of ICU stay, and using this data, propose a separate stochastic model to reduce the impact of SI variability during glycaemic control using the STAR glycaemic control protocol.
The value of SI was identified hourly for each patient using a validated physiological model. Variability of SI was then calculated as the hour-to-hour percentage change in SI. SI was examined using 6 hour blocks of SI to display trends while mitigating the effects of noise. To reduce the impact of SI variability on achieving glycaemic control a new stochastic model for the most variable period, 0-18 hours, was generated. Virtual simulations were conducted using an existing glycaemic control protocol (STAR) to investigate the clinical impact of using this separate stochastic model during this period of increased metabolic variability.
For the first 18 hours, over 80% of all SI values were less than 0.5 × 10(-3) L/mU x min, compared to 65% for >18 hours. Using the new stochastic model for the first 18 hours of ICU stay reduced the number of hypoglycaemic measurements during virtual trials. For time spent below 4.4, 4.0, and 3.0 mmol/L absolute reductions of 1.1%, 0.8% and 0.1% were achieved, respectively. No severe hypoglycaemic events (BG < 2.2 mmol/L) occurred for either case.
SI levels increase significantly, while variability decreases during the first 18 hours of a patients stay in ICU. Virtual trials, using a separate stochastic model for this period, demonstrated a reduction in variability and hypoglycaemia during the first 18 hours without adversely affecting the overall level of control. Thus, use of multiple models can reduce the impact of SI variability during model-based glycaemic control.
危重症患者的代谢随时间动态演变。在遭受严重创伤后,反调节激素水平显著升高,但在重症监护病房(ICU)的最初12 - 48小时内迅速下降。这些激素对胰岛素敏感性(SI)有直接的生理影响。了解SI的变异性对于安全管理血糖水平和理解患者病情演变至关重要。本研究的目的是评估ICU住院前两天SI的演变情况,并利用这些数据提出一个单独的随机模型,以减少在使用STAR血糖控制方案进行血糖控制期间SI变异性的影响。
使用经过验证的生理模型每小时确定每位患者的SI值。然后将SI的变异性计算为SI每小时的百分比变化。使用6小时的SI区间来检查SI以显示趋势,同时减轻噪声的影响。为了减少SI变异性对实现血糖控制的影响,针对变化最大的时期(0 - 18小时)生成了一个新的随机模型。使用现有的血糖控制方案(STAR)进行虚拟模拟,以研究在代谢变异性增加的这段时间内使用这个单独的随机模型的临床影响。
在最初18小时内,所有SI值中超过80%小于0.5×10⁻³L/mU·min,而在>18小时时这一比例为65%。在ICU住院的最初18小时使用新的随机模型减少了虚拟试验期间低血糖测量的次数。对于血糖低于4.4、4.0和3.0 mmol/L的时间,绝对减少率分别为1.1%、0.8%和0.1%。两种情况均未发生严重低血糖事件(血糖<2.2 mmol/L)。
在患者入住ICU的最初18小时内,SI水平显著升高,而变异性降低。在此期间使用单独的随机模型进行虚拟试验表明,在最初18小时内变异性和低血糖情况有所减少,且未对总体控制水平产生不利影响。因此,使用多个模型可以减少基于模型的血糖控制期间SI变异性的影响。