Shen X, Nunes J P F, Yang J, Jobe R K, Li R K, Lin Ming-Fu, Moore B, Niebuhr M, Weathersby S P, Wolf T J A, Yoneda C, Guehr Markus, Centurion Martin, Wang X J
SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
Struct Dyn. 2019 Oct 15;6(5):054305. doi: 10.1063/1.5120864. eCollection 2019 Sep.
The development of ultrafast gas electron diffraction with nonrelativistic electrons has enabled the determination of molecular structures with atomic spatial resolution. It has, however, been challenging to break the picosecond temporal resolution barrier and achieve the goal that has long been envisioned-making space- and-time resolved molecular movies of chemical reaction in the gas-phase. Recently, an ultrafast electron diffraction (UED) apparatus using mega-electron-volt (MeV) electrons was developed at the SLAC National Accelerator Laboratory for imaging ultrafast structural dynamics of molecules in the gas phase. The SLAC gas-phase MeV UED has achieved 65 fs root mean square temporal resolution, 0.63 Å spatial resolution, and 0.22 Å reciprocal-space resolution. Such high spatial-temporal resolution has enabled the capturing of real-time molecular movies of fundamental photochemical mechanisms, such as chemical bond breaking, ring opening, and a nuclear wave packet crossing a conical intersection. In this paper, the design that enables the high spatial-temporal resolution of the SLAC gas phase MeV UED is presented. The compact design of the differential pump section of the SLAC gas phase MeV UED realized five orders-of-magnitude vacuum isolation between the electron source and gas sample chamber. The spatial resolution, temporal resolution, and long-term stability of the apparatus are systematically characterized.
利用非相对论电子的超快气体电子衍射技术的发展,使得能够以原子空间分辨率测定分子结构。然而,突破皮秒时间分辨率障碍并实现长期以来所设想的目标——制作气相化学反应的时空分辨分子电影,一直具有挑战性。最近,SLAC国家加速器实验室开发了一种使用兆电子伏特(MeV)电子的超快电子衍射(UED)装置,用于对气相分子的超快结构动力学进行成像。SLAC气相MeV UED已实现65飞秒的均方根时间分辨率、0.63埃的空间分辨率和0.22埃的倒易空间分辨率。如此高的时空分辨率使得能够捕捉基本光化学机制的实时分子电影,如化学键断裂、开环以及核波包穿过锥形交叉点。本文介绍了实现SLAC气相MeV UED高时空分辨率的设计。SLAC气相MeV UED的差动泵浦部分的紧凑设计实现了电子源与气体样品室之间五个数量级的真空隔离。对该装置的空间分辨率、时间分辨率和长期稳定性进行了系统表征。