Otto M R, René de Cotret L P, Stern M J, Siwick B J
Department of Physics, Center for the Physics of Materials, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8, Canada.
Struct Dyn. 2017 Aug 2;4(5):051101. doi: 10.1063/1.4989960. eCollection 2017 Sep.
We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability ([Formula: see text]10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization.
我们展示了在一台高亮度超快电子衍射仪器中,利用从锁模飞秒振荡器直接产生的锁相微波信号来压缩电子脉冲。此外,还设计并实现了一种连续波相位稳定系统,该系统能精确校正压缩腔中因功率放大和热漂移引起的失谐所产生的相位波动。通过电子测量,微波定时稳定性从100 fs均方根误差提高到了5 fs,并且电子脉冲的长期到达时间稳定性(超过10小时)提高到了低于我们50 fs的测量分辨率。这些结果表明,压缩脉冲的亚相对论超快电子衍射不再受激光 - 微波同步的限制。