Suppr超能文献

用于神经网络系统的三维(3D)垂直电阻式随机存取存储器(VRRAM)突触

Three-Dimensional (3D) Vertical Resistive Random-Access Memory (VRRAM) Synapses for Neural Network Systems.

作者信息

Sun Wookyung, Choi Sujin, Kim Bokyung, Park Junhee

机构信息

Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea.

Medical Research Institute, Ewha Womans University, Seoul 03760, Korea.

出版信息

Materials (Basel). 2019 Oct 22;12(20):3451. doi: 10.3390/ma12203451.

Abstract

Memristor devices are generally suitable for incorporation in neuromorphic systems as synapses because they can be integrated into crossbar array circuits with high area efficiency. In the case of a two-dimensional (2D) crossbar array, however, the size of the array is proportional to the neural network's depth and the number of its input and output nodes. This means that a 2D crossbar array is not suitable for a deep neural network. On the other hand, synapses that use a memristor with a 3D structure are suitable for implementing a neuromorphic chip for a multi-layered neural network. In this study, we propose a new optimization method for machine learning weight changes that considers the structural characteristics of a 3D vertical resistive random-access memory (VRRAM) structure for the first time. The newly proposed synapse operating principle of the 3D VRRAM structure can simplify the complexity of a neuron circuit. This study investigates the operating principle of 3D VRRAM synapses with comb-shaped word lines and demonstrates that the proposed 3D VRRAM structure will be a promising solution for a high-density neural network hardware system.

摘要

忆阻器器件通常适合作为突触集成到神经形态系统中,因为它们可以以高面积效率集成到交叉阵列电路中。然而,对于二维(2D)交叉阵列而言,阵列的大小与神经网络的深度及其输入和输出节点的数量成正比。这意味着二维交叉阵列不适用于深度神经网络。另一方面,使用具有三维结构的忆阻器的突触适用于实现用于多层神经网络的神经形态芯片。在本研究中,我们首次提出了一种考虑三维垂直电阻式随机存取存储器(VRRAM)结构的结构特征的机器学习权重变化的新优化方法。新提出的三维VRRAM结构的突触工作原理可以简化神经元电路的复杂性。本研究研究了具有梳状字线的三维VRRAM突触的工作原理,并证明所提出的三维VRRAM结构将是高密度神经网络硬件系统的一个有前途的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0664/6829311/c548841fac38/materials-12-03451-g001.jpg

相似文献

3
Analysis of Leakage Current of HfO/TaO-Based 3-D Vertical Resistive Random Access Memory Array.
Micromachines (Basel). 2021 May 26;12(6):614. doi: 10.3390/mi12060614.
4
Low Power Consumption Nanofilamentary ECM and VCM Cells in a Single Sidewall of High-Density VRRAM Arrays.
Adv Sci (Weinh). 2019 Oct 7;6(24):1902363. doi: 10.1002/advs.201902363. eCollection 2019 Dec.
5
Sign backpropagation: An on-chip learning algorithm for analog RRAM neuromorphic computing systems.
Neural Netw. 2018 Dec;108:217-223. doi: 10.1016/j.neunet.2018.08.012. Epub 2018 Sep 1.
7
Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks.
Front Neurosci. 2019 Aug 6;13:812. doi: 10.3389/fnins.2019.00812. eCollection 2019.
9
Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
Materials (Basel). 2020 Feb 20;13(4):938. doi: 10.3390/ma13040938.
10
Electromagnetic Analysis of Vertical Resistive Memory with a Sub-nm Thick Electrode.
Nanomaterials (Basel). 2020 Aug 20;10(9):1634. doi: 10.3390/nano10091634.

引用本文的文献

1
Artificial Neural Networks in Classification of Steel Grades Based on Non-Destructive Tests.
Materials (Basel). 2020 May 27;13(11):2445. doi: 10.3390/ma13112445.
2
Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
Materials (Basel). 2020 Feb 20;13(4):938. doi: 10.3390/ma13040938.

本文引用的文献

1
Memristor Neural Network Training with Clock Synchronous Neuromorphic System.
Micromachines (Basel). 2019 Jun 8;10(6):384. doi: 10.3390/mi10060384.
2
Analysis of the Memristor-Based Crossbar Synapse for Neuromorphic Systems.
J Nanosci Nanotechnol. 2019 Oct 1;19(10):6703-6709. doi: 10.1166/jnn.2019.17110.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验