Sun Wookyung, Choi Sujin, Kim Bokyung, Park Junhee
Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea.
Medical Research Institute, Ewha Womans University, Seoul 03760, Korea.
Materials (Basel). 2019 Oct 22;12(20):3451. doi: 10.3390/ma12203451.
Memristor devices are generally suitable for incorporation in neuromorphic systems as synapses because they can be integrated into crossbar array circuits with high area efficiency. In the case of a two-dimensional (2D) crossbar array, however, the size of the array is proportional to the neural network's depth and the number of its input and output nodes. This means that a 2D crossbar array is not suitable for a deep neural network. On the other hand, synapses that use a memristor with a 3D structure are suitable for implementing a neuromorphic chip for a multi-layered neural network. In this study, we propose a new optimization method for machine learning weight changes that considers the structural characteristics of a 3D vertical resistive random-access memory (VRRAM) structure for the first time. The newly proposed synapse operating principle of the 3D VRRAM structure can simplify the complexity of a neuron circuit. This study investigates the operating principle of 3D VRRAM synapses with comb-shaped word lines and demonstrates that the proposed 3D VRRAM structure will be a promising solution for a high-density neural network hardware system.
忆阻器器件通常适合作为突触集成到神经形态系统中,因为它们可以以高面积效率集成到交叉阵列电路中。然而,对于二维(2D)交叉阵列而言,阵列的大小与神经网络的深度及其输入和输出节点的数量成正比。这意味着二维交叉阵列不适用于深度神经网络。另一方面,使用具有三维结构的忆阻器的突触适用于实现用于多层神经网络的神经形态芯片。在本研究中,我们首次提出了一种考虑三维垂直电阻式随机存取存储器(VRRAM)结构的结构特征的机器学习权重变化的新优化方法。新提出的三维VRRAM结构的突触工作原理可以简化神经元电路的复杂性。本研究研究了具有梳状字线的三维VRRAM突触的工作原理,并证明所提出的三维VRRAM结构将是高密度神经网络硬件系统的一个有前途的解决方案。