Suppr超能文献

基于时钟同步神经形态系统的忆阻器神经网络训练

Memristor Neural Network Training with Clock Synchronous Neuromorphic System.

作者信息

Jo Sumin, Sun Wookyung, Kim Bokyung, Kim Sunhee, Park Junhee, Shin Hyungsoon

机构信息

Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea.

Department of System Semiconductor Engineering, Sangmyung University, Cheonan 31066, Korea.

出版信息

Micromachines (Basel). 2019 Jun 8;10(6):384. doi: 10.3390/mi10060384.

Abstract

Memristor devices are considered to have the potential to implement unsupervised learning, especially spike timing-dependent plasticity (STDP), in the field of neuromorphic hardware research. In this study, a neuromorphic hardware system for multilayer unsupervised learning was designed, and unsupervised learning was performed with a memristor neural network. We showed that the nonlinear characteristic memristor neural network can be trained by unsupervised learning only with the correlation between inputs and outputs. Moreover, a method to train nonlinear memristor devices in a supervised manner, named guide training, was devised. Memristor devices have a nonlinear characteristic, which makes implementing machine learning algorithms, such as backpropagation, difficult. The guide-training algorithm devised in this paper updates the synaptic weights by only using the correlations between inputs and outputs, and therefore, neither complex mathematical formulas nor computations are required during the training. Thus, it is considered appropriate to train a nonlinear memristor neural network. All training and inference simulations were performed using the designed neuromorphic hardware system. With the system and memristor neural network, the image classification was successfully done using both the Hebbian unsupervised training and guide supervised training methods.

摘要

在神经形态硬件研究领域,忆阻器器件被认为具有实现无监督学习的潜力,尤其是基于脉冲时间依赖可塑性(STDP)的无监督学习。在本研究中,设计了一种用于多层无监督学习的神经形态硬件系统,并使用忆阻器神经网络进行了无监督学习。我们表明,非线性忆阻器神经网络仅通过输入与输出之间的相关性即可进行无监督学习训练。此外,还设计了一种以监督方式训练非线性忆阻器器件的方法,称为引导训练。忆阻器器件具有非线性特性,这使得诸如反向传播等机器学习算法的实现变得困难。本文设计的引导训练算法仅通过使用输入与输出之间的相关性来更新突触权重,因此,在训练过程中既不需要复杂的数学公式也不需要计算。因此,它被认为适合训练非线性忆阻器神经网络。所有训练和推理模拟均使用所设计的神经形态硬件系统进行。利用该系统和忆阻器神经网络,通过赫布型无监督训练和引导监督训练方法成功完成了图像分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e68/6632029/798f7fb032ce/micromachines-10-00384-g001.jpg

相似文献

1
Memristor Neural Network Training with Clock Synchronous Neuromorphic System.
Micromachines (Basel). 2019 Jun 8;10(6):384. doi: 10.3390/mi10060384.
3
Analysis of the Memristor-Based Crossbar Synapse for Neuromorphic Systems.
J Nanosci Nanotechnol. 2019 Oct 1;19(10):6703-6709. doi: 10.1166/jnn.2019.17110.
4
Equilibrium Propagation for Memristor-Based Recurrent Neural Networks.
Front Neurosci. 2020 Mar 24;14:240. doi: 10.3389/fnins.2020.00240. eCollection 2020.
5
Training memristor-based multilayer neuromorphic networks with SGD, momentum and adaptive learning rates.
Neural Netw. 2020 Aug;128:142-149. doi: 10.1016/j.neunet.2020.04.025. Epub 2020 May 7.
6
Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
Materials (Basel). 2020 Feb 20;13(4):938. doi: 10.3390/ma13040938.
7
A Learning-Rate Modulable and Reliable TiO Memristor Array for Robust, Fast, and Accurate Neuromorphic Computing.
Adv Sci (Weinh). 2022 Aug;9(22):e2201117. doi: 10.1002/advs.202201117. Epub 2022 Jun 5.
8
Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks.
Front Neurosci. 2019 Aug 6;13:812. doi: 10.3389/fnins.2019.00812. eCollection 2019.
10
Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights.
Nanotechnology. 2020 Jan 17;31(4):045201. doi: 10.1088/1361-6528/ab4a6d. Epub 2019 Oct 2.

引用本文的文献

5
Resistive Switching Memory Devices Based on Body Fluid of L.
Micromachines (Basel). 2019 Aug 16;10(8):540. doi: 10.3390/mi10080540.

本文引用的文献

1
Convolutional networks for fast, energy-efficient neuromorphic computing.
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11441-11446. doi: 10.1073/pnas.1604850113. Epub 2016 Sep 20.
2
Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
Neural Netw. 2015 Dec;72:152-67. doi: 10.1016/j.neunet.2015.07.004. Epub 2015 Aug 18.
3
Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface.
Science. 2014 Aug 8;345(6197):668-73. doi: 10.1126/science.1254642. Epub 2014 Aug 7.
4
Integration of nanoscale memristor synapses in neuromorphic computing architectures.
Nanotechnology. 2013 Sep 27;24(38):384010. doi: 10.1088/0957-4484/24/38/384010. Epub 2013 Sep 2.
5
A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications.
Nano Lett. 2012 Jan 11;12(1):389-95. doi: 10.1021/nl203687n. Epub 2011 Dec 9.
6
A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity.
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1266-74. doi: 10.1073/pnas.1106161108. Epub 2011 Nov 16.
7
Nanoscale memristor device as synapse in neuromorphic systems.
Nano Lett. 2010 Apr 14;10(4):1297-301. doi: 10.1021/nl904092h.
8
The missing memristor found.
Nature. 2008 May 1;453(7191):80-3. doi: 10.1038/nature06932.
9
Do we have brain to spare?
Neurology. 2005 Jun 28;64(12):2004-5. doi: 10.1212/01.WNL.0000166914.38327.BB.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验