Department of Electrical Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad 380026, India.
Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore, Singapore.
Int J Environ Res Public Health. 2019 Oct 23;16(21):4068. doi: 10.3390/ijerph16214068.
Hypertension (HT) is an extreme increment in blood pressure that can prompt a stroke, kidney disease, and heart attack. HT does not show any symptoms at the early stage, but can lead to various cardiovascular diseases. Hence, it is essential to identify it at the beginning stages. It is tedious to analyze electrocardiogram (ECG) signals visually due to their low amplitude and small bandwidth. Hence, to avoid possible human errors in the diagnosis of HT patients, an automated ECG-based system is developed. This paper proposes the computerized segregation of low-risk hypertension (LRHT) and high-risk hypertension (HRHT) using ECG signals with an optimal orthogonal wavelet filter bank (OWFB) system. The HRHT class is comprised of patients with myocardial infarction, stroke, and syncope ECG signals. The ECG-data are acquired from physionet's smart health for accessing risk via ECG event (SHAREE) database, which contains recordings of a total 139 subjects. First, ECG signals are segmented into epochs of 5 min. The segmented epochs are then decomposed into six wavelet sub-bands (WSBs) using OWFB. We extract the signal fractional dimension (SFD) and log-energy (LOGE) features from all six WSBs. Using Student's -test ranking, we choose the high ranked WSBs of LOGE and SFD features. We develop a novel hypertension diagnosis index (HDI) using two features (SFD and LOGE) to discriminate LRHT and HRHT classes using a single numeric value. The performance of our developed system is found to be encouraging, and we believe that it can be employed in intensive care units to monitor the abrupt rise in blood pressure while screening the ECG signals, provided this is tested with an extensive independent database.
高血压(HT)是血压极度升高的一种疾病,会导致中风、肾病和心脏病。HT 在早期阶段没有任何症状,但会导致各种心血管疾病。因此,早期发现是很重要的。由于心电图(ECG)信号的幅度低、带宽小,因此通过视觉分析 ECG 信号非常繁琐。因此,为了避免在 HT 患者的诊断中可能出现人为错误,开发了一种基于 ECG 的自动化系统。本文提出了一种使用 ECG 信号和最优正交小波滤波器组(OWFB)系统来对低危高血压(LRHT)和高危高血压(HRHT)进行计算机分类的方法。HRHT 类由心肌梗死、中风和晕厥 ECG 信号的患者组成。ECG 数据来自 physionet 的智能健康心电图事件风险访问(SHAREE)数据库,该数据库包含了 139 名受试者的记录。首先,将 ECG 信号分段为 5 分钟的段。然后,使用 OWFB 将分段的段分解为六个子带(WSB)。我们从所有六个 WSB 中提取信号分数维数(SFD)和对数能量(LOGE)特征。使用学生 t 检验排序,我们选择 LOGE 和 SFD 特征的高排名 WSB。我们使用两个特征(SFD 和 LOGE)开发了一种新的高血压诊断指数(HDI),以使用单个数值来区分 LRHT 和 HRHT 类。我们开发的系统的性能令人鼓舞,我们相信它可以在重症监护病房中使用,以监测血压的突然升高,同时筛选 ECG 信号,但这需要用广泛的独立数据库进行测试。