Suppr超能文献

利用从单通道脑电图中提取的基于最优小波的范数特征自动检测精神分裂症。

Automated detection of schizophrenia using optimal wavelet-based norm features extracted from single-channel EEG.

作者信息

Sharma Manish, Acharya U Rajendra

机构信息

Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad, India.

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore.

出版信息

Cogn Neurodyn. 2021 Aug;15(4):661-674. doi: 10.1007/s11571-020-09655-w. Epub 2021 Jan 15.

Abstract

Schizophrenia (SZ) is a mental disorder, which affects the ability of human thinking, memory, and way of living. Manual screening of SZ patients is tedious, laborious and prone to human errors. Hence, we developed a computer-aided diagnosis (CAD) system to diagnose SZ patients accurately using single-channel electroencephalogram (EEG) signals. The EEG signals are nonlinear and non-stationary. Hence, we have used wavelet-based features to capture the hidden non-stationary nature present in the signal. First, the EEG signals are subjected to the the wavelet decomposition through six iterations, which yields seven sub-bands. The norm is computed for each sub-band. The extracted norm features are disseminated to various classification algorithms. We have obtained the highest accuracy of 99.21% and 97.2% using K-nearest neighbor classifiers with ten-fold and leave-one-subject-out cross-validations. The developed single-channel EEG wavelet-based CAD model can help the clinicians to confirm the outcome of their manual screening and obtain an accurate diagnosis.

摘要

精神分裂症(SZ)是一种精神障碍,它会影响人类的思维能力、记忆力和生活方式。对SZ患者进行人工筛查既繁琐又费力,而且容易出现人为错误。因此,我们开发了一种计算机辅助诊断(CAD)系统,以使用单通道脑电图(EEG)信号准确诊断SZ患者。EEG信号是非线性且非平稳的。因此,我们使用基于小波的特征来捕捉信号中存在的隐藏的非平稳特性。首先,将EEG信号进行六次迭代的小波分解,产生七个子带。计算每个子带的范数。提取的范数特征被分发给各种分类算法。使用具有十折交叉验证和留一法交叉验证的K近邻分类器,我们分别获得了99.21%和97.2%的最高准确率。所开发的基于单通道EEG小波的CAD模型可以帮助临床医生确认其人工筛查的结果并获得准确的诊断。

相似文献

1
Automated detection of schizophrenia using optimal wavelet-based norm features extracted from single-channel EEG.
Cogn Neurodyn. 2021 Aug;15(4):661-674. doi: 10.1007/s11571-020-09655-w. Epub 2021 Jan 15.
2
A self-learned decomposition and classification model for schizophrenia diagnosis.
Comput Methods Programs Biomed. 2021 Nov;211:106450. doi: 10.1016/j.cmpb.2021.106450. Epub 2021 Oct 2.
5
An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank.
Comput Biol Med. 2018 Jul 1;98:58-75. doi: 10.1016/j.compbiomed.2018.04.025. Epub 2018 May 10.
6
Automated FBSE-EWT based learning framework for detection of epileptic seizures using time-segmented EEG signals.
Comput Biol Med. 2021 Sep;136:104708. doi: 10.1016/j.compbiomed.2021.104708. Epub 2021 Jul 30.
7
A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications.
Comput Methods Programs Biomed. 2020 Apr;187:105325. doi: 10.1016/j.cmpb.2020.105325. Epub 2020 Jan 18.
8
Automatic identification of insomnia using optimal antisymmetric biorthogonal wavelet filter bank with ECG signals.
Comput Biol Med. 2021 Apr;131:104246. doi: 10.1016/j.compbiomed.2021.104246. Epub 2021 Feb 4.
9
A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals.
IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2390-2400. doi: 10.1109/TNSRE.2020.3022715. Epub 2020 Nov 6.
10
Automated detection of severity of hypertension ECG signals using an optimal bi-orthogonal wavelet filter bank.
Comput Biol Med. 2020 Aug;123:103924. doi: 10.1016/j.compbiomed.2020.103924. Epub 2020 Jul 23.

引用本文的文献

1
EEG-based schizophrenia detection: integrating discrete wavelet transform and deep learning.
Cogn Neurodyn. 2025 Dec;19(1):62. doi: 10.1007/s11571-025-10248-8. Epub 2025 Apr 17.
2
A comparative study of wavelet families for schizophrenia detection.
Front Hum Neurosci. 2024 Dec 10;18:1463819. doi: 10.3389/fnhum.2024.1463819. eCollection 2024.
3
Multiresolution feature fusion for smart diagnosis of schizophrenia in adolescents using EEG signals.
Cogn Neurodyn. 2024 Oct;18(5):2779-2807. doi: 10.1007/s11571-024-10120-1. Epub 2024 May 11.
4
Schizophrenia diagnosis based on diverse epoch size resting-state EEG using machine learning.
PeerJ Comput Sci. 2024 Aug 20;10:e2170. doi: 10.7717/peerj-cs.2170. eCollection 2024.
5
Automated diagnosis of schizophrenia based on spatial-temporal residual graph convolutional network.
Biomed Eng Online. 2024 Jun 17;23(1):55. doi: 10.1186/s12938-024-01250-y.
6
Optimizing feature subset for schizophrenia detection using multichannel EEG signals and rough set theory.
Cogn Neurodyn. 2024 Apr;18(2):431-446. doi: 10.1007/s11571-023-10011-x. Epub 2024 Jan 8.
7
Transfer learning and self-distillation for automated detection of schizophrenia using single-channel EEG and scalogram images.
Phys Eng Sci Med. 2025 Mar;48(1):3-18. doi: 10.1007/s13246-024-01420-1. Epub 2024 Apr 23.
8
9
Computational insights on asymmetrical and receptor-mediated chunking: implications for OCD and Schizophrenia.
Cogn Neurodyn. 2024 Feb;18(1):217-232. doi: 10.1007/s11571-022-09865-4. Epub 2023 Jan 12.
10
A Narrative Review of Speech and EEG Features for Schizophrenia Detection: Progress and Challenges.
Bioengineering (Basel). 2023 Apr 20;10(4):493. doi: 10.3390/bioengineering10040493.

本文引用的文献

1
A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals.
IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2390-2400. doi: 10.1109/TNSRE.2020.3022715. Epub 2020 Nov 6.
2
Automated phase classification in cyclic alternating patterns in sleep stages using Wigner-Ville Distribution based features.
Comput Biol Med. 2020 Apr;119:103691. doi: 10.1016/j.compbiomed.2020.103691. Epub 2020 Mar 4.
4
Automated detection of shockable and non-shockable arrhythmia using novel wavelet-based ECG features.
Comput Biol Med. 2019 Dec;115:103446. doi: 10.1016/j.compbiomed.2019.103446. Epub 2019 Sep 18.
5
Automated detection of schizophrenia using nonlinear signal processing methods.
Artif Intell Med. 2019 Sep;100:101698. doi: 10.1016/j.artmed.2019.07.006. Epub 2019 Jul 20.
6
Automated approach for detection of ischemic stroke using Delaunay Triangulation in brain MRI images.
Comput Biol Med. 2018 Dec 1;103:116-129. doi: 10.1016/j.compbiomed.2018.10.016. Epub 2018 Oct 16.
7
EEG Multiscale Complexity in Schizophrenia During Picture Naming.
Front Physiol. 2018 Sep 7;9:1213. doi: 10.3389/fphys.2018.01213. eCollection 2018.
8
A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank.
Comput Biol Med. 2018 Nov 1;102:341-356. doi: 10.1016/j.compbiomed.2018.07.005. Epub 2018 Jul 23.
9
Application of an optimal class of antisymmetric wavelet filter banks for obstructive sleep apnea diagnosis using ECG signals.
Comput Biol Med. 2018 Sep 1;100:100-113. doi: 10.1016/j.compbiomed.2018.06.011. Epub 2018 Jun 19.
10
Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats.
Comput Biol Med. 2018 Nov 1;102:278-287. doi: 10.1016/j.compbiomed.2018.06.002. Epub 2018 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验