Suppr超能文献

利用从单通道脑电图中提取的基于最优小波的范数特征自动检测精神分裂症。

Automated detection of schizophrenia using optimal wavelet-based norm features extracted from single-channel EEG.

作者信息

Sharma Manish, Acharya U Rajendra

机构信息

Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad, India.

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore.

出版信息

Cogn Neurodyn. 2021 Aug;15(4):661-674. doi: 10.1007/s11571-020-09655-w. Epub 2021 Jan 15.

Abstract

Schizophrenia (SZ) is a mental disorder, which affects the ability of human thinking, memory, and way of living. Manual screening of SZ patients is tedious, laborious and prone to human errors. Hence, we developed a computer-aided diagnosis (CAD) system to diagnose SZ patients accurately using single-channel electroencephalogram (EEG) signals. The EEG signals are nonlinear and non-stationary. Hence, we have used wavelet-based features to capture the hidden non-stationary nature present in the signal. First, the EEG signals are subjected to the the wavelet decomposition through six iterations, which yields seven sub-bands. The norm is computed for each sub-band. The extracted norm features are disseminated to various classification algorithms. We have obtained the highest accuracy of 99.21% and 97.2% using K-nearest neighbor classifiers with ten-fold and leave-one-subject-out cross-validations. The developed single-channel EEG wavelet-based CAD model can help the clinicians to confirm the outcome of their manual screening and obtain an accurate diagnosis.

摘要

精神分裂症(SZ)是一种精神障碍,它会影响人类的思维能力、记忆力和生活方式。对SZ患者进行人工筛查既繁琐又费力,而且容易出现人为错误。因此,我们开发了一种计算机辅助诊断(CAD)系统,以使用单通道脑电图(EEG)信号准确诊断SZ患者。EEG信号是非线性且非平稳的。因此,我们使用基于小波的特征来捕捉信号中存在的隐藏的非平稳特性。首先,将EEG信号进行六次迭代的小波分解,产生七个子带。计算每个子带的范数。提取的范数特征被分发给各种分类算法。使用具有十折交叉验证和留一法交叉验证的K近邻分类器,我们分别获得了99.21%和97.2%的最高准确率。所开发的基于单通道EEG小波的CAD模型可以帮助临床医生确认其人工筛查的结果并获得准确的诊断。

相似文献

2
A self-learned decomposition and classification model for schizophrenia diagnosis.一种用于精神分裂症诊断的自学习分解与分类模型。
Comput Methods Programs Biomed. 2021 Nov;211:106450. doi: 10.1016/j.cmpb.2021.106450. Epub 2021 Oct 2.
9
A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals.一种使用脑电图信号自动检测精神分裂症的计算机化方法。
IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2390-2400. doi: 10.1109/TNSRE.2020.3022715. Epub 2020 Nov 6.

引用本文的文献

2
A comparative study of wavelet families for schizophrenia detection.用于精神分裂症检测的小波族比较研究。
Front Hum Neurosci. 2024 Dec 10;18:1463819. doi: 10.3389/fnhum.2024.1463819. eCollection 2024.

本文引用的文献

1
A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals.一种使用脑电图信号自动检测精神分裂症的计算机化方法。
IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2390-2400. doi: 10.1109/TNSRE.2020.3022715. Epub 2020 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验