Centre for Clinical Cardiovascular Engineering, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
The National Amyloidosis Centre, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK.
Med Eng Phys. 2019 Dec;74:153-161. doi: 10.1016/j.medengphy.2019.09.020. Epub 2019 Oct 22.
The mechanics of the mitral valve (MV) are the result of the interaction of different anatomical structures complexly arranged within the left heart (LH), with the blood flow. MV structure abnormalities might cause valve regurgitation which in turn can lead to heart failure. Patient-specific computational models of the MV could provide a personalised understanding of MV mechanics, dysfunctions and possible interventions. In this study, we propose a semi-automatic pipeline for MV modelling based on the integration of state-of-the-art medical imaging, i.e. cardiac magnetic resonance (CMR) and 3D transoesophageal-echocardiogram (TOE) with fluid-structure interaction (FSI) simulations. An FSI model of a patient with MV regurgitation was implemented using the finite element (FE) method and smoothed particle hydrodynamics (SPH). Our study showed the feasibility of combining image information and computer simulations to reproduce patient-specific MV mechanics as seen on medical images, and the potential for efficient in-silico studies of MV disease, personalised treatments and device design.
二尖瓣(MV)的力学是不同解剖结构在左心(LH)内复杂排列与血流相互作用的结果。MV 结构异常可能导致瓣反流,进而导致心力衰竭。MV 的患者特异性计算模型可以提供对 MV 力学、功能障碍和可能干预措施的个性化理解。在这项研究中,我们提出了一种基于最先进的医学成像(即心脏磁共振(CMR)和 3D 经食管超声心动图(TOE)与流固耦合(FSI)模拟集成的 MV 建模半自动流水线。使用有限元(FE)方法和光滑粒子流体动力学(SPH)实现了 MV 反流患者的 FSI 模型。我们的研究表明,将图像信息和计算机模拟相结合以再现医学图像上所见的患者特异性 MV 力学是可行的,并且有可能对 MV 疾病、个性化治疗和设备设计进行高效的计算机模拟研究。