Suppr超能文献

基于开源软件的房室瓣建模计算框架

A Computational Framework for Atrioventricular Valve Modeling Using Open-Source Software.

机构信息

Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.

Department of Biomedical Engineering, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112.

出版信息

J Biomech Eng. 2022 Oct 1;144(10). doi: 10.1115/1.4054485.

Abstract

Atrioventricular valve regurgitation is a significant cause of morbidity and mortality in patients with acquired and congenital cardiac valve disease. Image-derived computational modeling of atrioventricular valves has advanced substantially over the last decade and holds particular promise to inform valve repair in small and heterogeneous populations, which are less likely to be optimized through empiric clinical application. While an abundance of computational biomechanics studies has investigated mitral and tricuspid valve disease in adults, few studies have investigated its application to vulnerable pediatric and congenital heart populations. Further, to date, investigators have primarily relied upon a series of commercial applications that are neither designed for image-derived modeling of cardiac valves nor freely available to facilitate transparent and reproducible valve science. To address this deficiency, we aimed to build an open-source computational framework for the image-derived biomechanical analysis of atrioventricular valves. In the present work, we integrated an open-source valve modeling platform, SlicerHeart, and an open-source biomechanics finite element modeling software, FEBio, to facilitate image-derived atrioventricular valve model creation and finite element analysis. We present a detailed verification and sensitivity analysis to demonstrate the fidelity of this modeling in application to three-dimensional echocardiography-derived pediatric mitral and tricuspid valve models. Our analyses achieved an excellent agreement with those reported in the literature. As such, this evolving computational framework offers a promising initial foundation for future development and investigation of valve mechanics, in particular collaborative efforts targeting the development of improved repairs for children with congenital heart disease.

摘要

房室瓣反流是获得性和先天性心脏瓣膜病患者发病率和死亡率的重要原因。过去十年,房室瓣的基于影像的计算模型已取得重大进展,尤其有望为小群体和异质人群的瓣膜修复提供信息,而这些人群不太可能通过经验性临床应用得到优化。虽然有大量的计算生物力学研究调查了成人的二尖瓣和三尖瓣疾病,但很少有研究调查其在易受影响的儿科和先天性心脏人群中的应用。此外,迄今为止,研究人员主要依赖于一系列商业应用程序,这些应用程序既不是为心脏瓣膜的基于影像的建模而设计的,也无法免费获得,从而无法实现瓣膜科学的透明和可重复。为了解决这一不足,我们旨在建立一个用于房室瓣基于影像的生物力学分析的开源计算框架。在本工作中,我们整合了一个开源瓣膜建模平台 SlicerHeart 和一个开源生物力学有限元建模软件 FEBio,以促进基于影像的房室瓣模型创建和有限元分析。我们进行了详细的验证和敏感性分析,以证明这种建模在应用于三维超声心动图衍生的儿科二尖瓣和三尖瓣模型时的准确性。我们的分析与文献报道的结果非常吻合。因此,这个不断发展的计算框架为未来的瓣膜力学研究和开发提供了一个有前景的初步基础,特别是针对为先天性心脏病儿童开发改进修复的合作努力。

相似文献

2
Visualization and Quantification of the Unrepaired Complete Atrioventricular Canal Valve Using Open-Source Software.
J Am Soc Echocardiogr. 2022 Sep;35(9):985-996.e11. doi: 10.1016/j.echo.2022.04.015. Epub 2022 May 7.
3
Towards patient-specific modeling of mitral valve repair: 3D transesophageal echocardiography-derived parameter estimation.
Med Image Anal. 2017 Jan;35:599-609. doi: 10.1016/j.media.2016.09.006. Epub 2016 Sep 27.
4
Mitral and tricuspid valve repair and growth in unbalanced atrial ventricular canal defects.
J Thorac Cardiovasc Surg. 2012 Apr;143(4 Suppl):S29-32. doi: 10.1016/j.jtcvs.2011.10.031. Epub 2011 Dec 6.
5
SlicerHeart: An open-source computing platform for cardiac image analysis and modeling.
Front Cardiovasc Med. 2022 Sep 6;9:886549. doi: 10.3389/fcvm.2022.886549. eCollection 2022.
6
An investigation of layer-specific tissue biomechanics of porcine atrioventricular valve anterior leaflets.
Acta Biomater. 2019 Sep 15;96:368-384. doi: 10.1016/j.actbio.2019.06.049. Epub 2019 Jun 29.
8
FEBio: finite elements for biomechanics.
J Biomech Eng. 2012 Jan;134(1):011005. doi: 10.1115/1.4005694.
10
Long-term functional analysis of the atrioventricular valve in patients undergoing single ventricle palliation.
Ann Thorac Surg. 2011 Nov;92(5):1767-73; discussion 1773. doi: 10.1016/j.athoracsur.2011.04.025. Epub 2011 Jul 23.

引用本文的文献

1
A noninvasive method for determining elastic parameters of valve tissue using physics-informed neural networks.
Acta Biomater. 2025 Jun 15;200:283-298. doi: 10.1016/j.actbio.2025.05.021. Epub 2025 May 26.
3
Effects of anatomy and head motion on spatial patterns of deformation in the human brain.
Ann Biomed Eng. 2025 Apr;53(4):867-880. doi: 10.1007/s10439-024-03671-1. Epub 2024 Dec 31.
4
Experimental Assessment of Traction Force and Associated Fetal Brain Deformation in Vacuum-Assisted Delivery.
Ann Biomed Eng. 2025 Apr;53(4):825-844. doi: 10.1007/s10439-024-03665-z. Epub 2024 Dec 22.
6
FEBio FINESSE: An Open-Source Finite Element Simulation Approach to Estimate In Vivo Heart Valve Strains Using Shape Enforcement.
Ann Biomed Eng. 2025 Jan;53(1):241-259. doi: 10.1007/s10439-024-03637-3. Epub 2024 Nov 5.
7
Identifying Heterogeneous Micromechanical Properties of Biological Tissues via Physics-Informed Neural Networks.
Small Methods. 2025 Jan;9(1):e2400620. doi: 10.1002/smtd.202400620. Epub 2024 Aug 1.
9
Leaflet remodeling reduces tricuspid valve function in a computational model.
J Mech Behav Biomed Mater. 2024 Apr;152:106453. doi: 10.1016/j.jmbbm.2024.106453. Epub 2024 Feb 2.
10
Geometric data of commercially available tricuspid valve annuloplasty devices.
Data Brief. 2024 Jan 9;52:110051. doi: 10.1016/j.dib.2024.110051. eCollection 2024 Feb.

本文引用的文献

1
Using UncertainSCI to Quantify Uncertainty in Cardiac Simulations.
Comput Cardiol (2010). 2020 Sep;47. doi: 10.22489/cinc.2020.275. Epub 2021 Feb 10.
2
Parameterization, geometric modeling, and isogeometric analysis of tricuspid valves.
Comput Methods Appl Mech Eng. 2021 Oct 1;384. doi: 10.1016/j.cma.2021.113960. Epub 2021 Jun 17.
3
Pre-surgical Prediction of Ischemic Mitral Regurgitation Recurrence Using In Vivo Mitral Valve Leaflet Strains.
Ann Biomed Eng. 2021 Dec;49(12):3711-3723. doi: 10.1007/s10439-021-02772-5. Epub 2021 Apr 9.
4
Open-Source Tool Kit for Interactive Planning of Transcatheter Mitral Valve Replacement Using Multimodality Imaging.
J Am Soc Echocardiogr. 2021 Aug;34(8):917-920. doi: 10.1016/j.echo.2021.03.014. Epub 2021 Apr 2.
5
Valve Strain Quantitation in Normal Mitral Valves and Mitral Prolapse With Variable Degrees of Regurgitation.
JACC Cardiovasc Imaging. 2021 Jun;14(6):1099-1109. doi: 10.1016/j.jcmg.2021.01.006. Epub 2021 Mar 17.
6
Biology and Biomechanics of the Heart Valve Extracellular Matrix.
J Cardiovasc Dev Dis. 2020 Dec 16;7(4):57. doi: 10.3390/jcdd7040057.
7
Efficient sampling for polynomial chaos-based uncertainty quantification and sensitivity analysis using weighted approximate Fekete points.
Int J Numer Method Biomed Eng. 2020 Nov;36(11):e3395. doi: 10.1002/cnm.3395. Epub 2020 Sep 9.
9
Disease Severity-Associated Gene Expression in Canine Myxomatous Mitral Valve Disease Is Dominated by TGFβ Signaling.
Front Genet. 2020 Apr 27;11:372. doi: 10.3389/fgene.2020.00372. eCollection 2020.
10
A pilot in silico modeling-based study of the pathological effects on the biomechanical function of tricuspid valves.
Int J Numer Method Biomed Eng. 2020 Jul;36(7):e3346. doi: 10.1002/cnm.3346. Epub 2020 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验