Schuler James, Samudrala Ram
Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, Buffalo, New York 14203, United States.
ACS Omega. 2019 Oct 9;4(17):17393-17403. doi: 10.1021/acsomega.9b02160. eCollection 2019 Oct 22.
We have upgraded our Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun drug repurposing by including ligand-based, data fusion, and decision tree pipelines. The goal of shotgun drug repurposing is to screen and rank every existing human use drug or compound for every disease/indication. The first version of CANDO implemented a structure-based pipeline that modeled interactions between compounds and proteins on a large scale, generating compound-proteome interaction signatures used to infer the similarity of drug behavior; the new pipelines accomplish this by incorporating molecular fingerprints and the Tanimoto coefficient. We obtain improved benchmarking performance with the new pipelines across all three evaluation metrics used: average indication accuracy, pairwise accuracy, and coverage. The best performing pipeline achieves an average indication accuracy of 19.0% at the top10 cutoff, compared to 11.7% for v1, and 2.2% for a random control. Our results demonstrate that the CANDO drug recovery accuracy is substantially improved by integrating multiple pipelines, thereby enhancing our ability to generate putative therapeutic repurposing candidates, and increasing drug discovery efficiency.
我们升级了用于散弹枪式药物重新利用的新型药物机会计算分析(CANDO)平台,纳入了基于配体的、数据融合和决策树管道。散弹枪式药物重新利用的目标是针对每种疾病/适应症对每一种现有的人类使用药物或化合物进行筛选和排名。CANDO的第一个版本实施了一个基于结构的管道,该管道大规模模拟化合物与蛋白质之间的相互作用,生成用于推断药物行为相似性的化合物-蛋白质组相互作用特征;新管道通过纳入分子指纹和塔尼莫托系数来实现这一目标。在使用的所有三个评估指标(平均适应症准确性、成对准确性和覆盖率)上,新管道都取得了改进的基准测试性能。表现最佳的管道在top10截断值时平均适应症准确性达到19.0%,相比之下,v1版本为11.7%,随机对照为2.2%。我们的结果表明,通过整合多个管道,CANDO药物回收准确性得到了显著提高,从而增强了我们生成假定治疗性重新利用候选药物的能力,并提高了药物发现效率。