Suppr超能文献

CANDO平台中相互作用评分标准的探索。

Exploration of interaction scoring criteria in the CANDO platform.

作者信息

Falls Zackary, Mangione William, Schuler James, Samudrala Ram

机构信息

Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 77 Goodell St., Suite 540, Buffalo, NY, 14203, USA.

出版信息

BMC Res Notes. 2019 Jun 7;12(1):318. doi: 10.1186/s13104-019-4356-3.

Abstract

OBJECTIVE

Ascertain the optimal interaction scoring criteria for the Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun drug repurposing to improve benchmarking performance, thereby enabling more accurate prediction of novel therapeutic drug-indication pairs.

RESULTS

We have investigated and enhanced the interaction scoring criteria in the bioinformatic docking protocol in the newest version of our platform (v1.5), with the best performing interaction scoring criterion yielding increased benchmarking accuracies from 11.7% in v1 to 12.8% in v1.5 at the top10 cutoff (the most stringent one) and correspondingly from 24.9 to 31.2% at the top100 cutoff.

摘要

目的

确定用于散弹枪式药物重新利用的新型药物机会计算分析(CANDO)平台的最佳相互作用评分标准,以提高基准测试性能,从而更准确地预测新型治疗药物-适应症对。

结果

我们在平台的最新版本(v1.5)的生物信息对接协议中研究并增强了相互作用评分标准,表现最佳的相互作用评分标准在top10截止值(最严格的截止值)下使基准测试准确率从v1版本的11.7%提高到v1.5版本的12.8%,在top100截止值下相应地从24.9%提高到31.2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/6555930/5000fe9a4167/13104_2019_4356_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验