Suppr超能文献

基于化学原子网络的层次化柔性对接算法,利用广义统计势能。

CANDOCK: Chemical Atomic Network-Based Hierarchical Flexible Docking Algorithm Using Generalized Statistical Potentials.

机构信息

Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47906, United States.

National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.

出版信息

J Chem Inf Model. 2020 Mar 23;60(3):1509-1527. doi: 10.1021/acs.jcim.9b00686. Epub 2020 Mar 3.

Abstract

Small-molecule docking has proven to be invaluable for drug design and discovery. However, existing docking methods have several limitations such as improper treatment of the interactions of essential components in the chemical environment of the binding pocket (e.g., cofactors, metal ions, etc.), incomplete sampling of chemically relevant ligand conformational space, and the inability to consistently correlate docking scores of the best binding pose with experimental binding affinities. We present CANDOCK, a novel docking algorithm, that utilizes a hierarchical approach to reconstruct ligands from an atomic grid using graph theory and generalized statistical potential functions to sample biologically relevant ligand conformations. Our algorithm accounts for protein flexibility, solvent, metal ions, and cofactor interactions in the binding pocket that are traditionally ignored by current methods. We evaluate the algorithm on the PDBbind, Astex, and PINC proteins to show its ability to reproduce the binding mode of the ligands that is independent of the initial ligand conformation in these benchmarks. Finally, we identify the best selector and ranker potential functions such that the statistical score of the best selected docked pose correlates with the experimental binding affinities of the ligands for any given protein target. Our results indicate that CANDOCK is a generalized flexible docking method that addresses several limitations of current docking methods by considering all interactions in the chemical environment of a binding pocket for correlating the best-docked pose with biological activity. CANDOCK along with all structures and scripts used for benchmarking is available at https://github.com/chopralab/candock_benchmark.

摘要

小分子对接已被证明在药物设计和发现中非常有价值。然而,现有的对接方法存在几个局限性,例如对结合口袋化学环境中必需成分(如辅因子、金属离子等)相互作用的不当处理、对化学相关配体构象空间的不完全采样,以及无法一致地将最佳结合构象的对接评分与实验结合亲和力相关联。我们提出了 CANDOCK,一种新的对接算法,它利用图论和广义统计势能函数从原子网格重建配体的层次方法来采样生物相关的配体构象。我们的算法考虑了结合口袋中蛋白质的柔性、溶剂、金属离子和辅因子相互作用,这些相互作用在当前方法中通常被忽略。我们在 PDBbind、Astex 和 PINC 蛋白上评估该算法,以证明其在这些基准测试中独立于初始配体构象重现配体结合模式的能力。最后,我们确定最佳选择器和排名势能函数,以便最佳选择的对接构象的统计得分与给定蛋白质靶标配体的实验结合亲和力相关。我们的结果表明,CANDOCK 是一种通用的柔性对接方法,通过考虑结合口袋化学环境中的所有相互作用,解决了当前对接方法的几个局限性,以将最佳对接构象与生物活性相关联。CANDOCK 以及用于基准测试的所有结构和脚本都可在 https://github.com/chopralab/candock_benchmark 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验