Suppr超能文献

在网络荟萃分析中扩展竞争治疗的概率排序指标,以反映许多结局的临床重要相对差异。

Extensions of the probabilistic ranking metrics of competing treatments in network meta-analysis to reflect clinically important relative differences on many outcomes.

机构信息

Department of Primary Education, University of Ioannina, Ioannina, Greece.

Faculté de Médecine, Université Paris Descartes, Paris, France.

出版信息

Biom J. 2020 Mar;62(2):375-385. doi: 10.1002/bimj.201900026. Epub 2019 Oct 29.

Abstract

One of the key features of network meta-analysis is ranking of interventions according to outcomes of interest. Ranking metrics are prone to misinterpretation because of two limitations associated with the current ranking methods. First, differences in relative treatment effects might not be clinically important and this is not reflected in the ranking metrics. Second, there are no established methods to include several health outcomes in the ranking assessments. To address these two issues, we extended the P-score method to allow for multiple outcomes and modified it to measure the mean extent of certainty that a treatment is better than the competing treatments by a certain amount, for example, the minimum clinical important difference. We suggest to present the tradeoff between beneficial and harmful outcomes allowing stakeholders to consider how much adverse effect they are willing to tolerate for specific gains in efficacy. We used a published network of 212 trials comparing 15 antipsychotics and placebo using a random effects network meta-analysis model, focusing on three outcomes; reduction in symptoms of schizophrenia in a standardized scale, all-cause discontinuation, and weight gain.

摘要

网络荟萃分析的一个关键特征是根据感兴趣的结果对干预措施进行排名。排名指标容易被误解,因为当前的排名方法存在两个局限性。首先,治疗效果的相对差异可能在临床上不重要,但这并没有反映在排名指标中。其次,没有确定的方法可以将多个健康结果纳入排名评估中。为了解决这两个问题,我们扩展了 P 分数方法以允许多个结果,并对其进行了修改,以衡量治疗效果优于竞争治疗的确定性程度,例如,最小临床重要差异。我们建议在有益和有害结果之间进行权衡,让利益相关者考虑他们愿意为特定疗效的提高容忍多少不良反应。我们使用了一个已发表的网络,其中包含了 212 项比较 15 种抗精神病药物和安慰剂的试验,使用随机效应网络荟萃分析模型,重点关注三个结果:标准化量表中精神分裂症症状的减轻、全因停药和体重增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fac2/7078966/2e53e933195c/BIMJ-62-375-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验