Suppr超能文献

生命体征记录中的平滑效应:事实还是虚构?一项回顾性队列分析,比较手动和连续生命体征测量在术后护理中评估数据平滑的效果。

Smoothing Effect in Vital Sign Recordings: Fact or Fiction? A Retrospective Cohort Analysis of Manual and Continuous Vital Sign Measurements to Assess Data Smoothing in Postoperative Care.

机构信息

From the Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.

Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom.

出版信息

Anesth Analg. 2018 Oct;127(4):960-966. doi: 10.1213/ANE.0000000000003694.

Abstract

BACKGROUND

Data smoothing of vital signs has been reported in the anesthesia literature, suggesting that clinical staff are biased toward measurements of normal physiology. However, these findings may be partially explained by clinicians interpolating spurious values from noisy signals and by the undersampling of physiological changes by infrequent manual observations. We explored the phenomenon of data smoothing using a method robust to these effects in a large postoperative dataset including respiratory rate, heart rate, and oxygen saturation (SpO2). We also assessed whether the presence of the vital sign taker creates an arousal effect.

METHODS

Study data came from a UK upper gastrointestinal postoperative ward (May 2009 to December 2013). We compared manually recorded vital sign data with contemporaneous continuous data recorded from monitoring equipment. We proposed that data smoothing increases differences between vital sign sources as vital sign abnormality increases. The primary assessment method was a mixed-effects model relating continuous-manual differences to vital sign values, adjusting for repeated measurements. We tested the regression slope significance and predicted the continuous-manual difference at clinically important vital sign values. We calculated limits of agreement (LoA) between vital sign sources using the Bland-Altman method, adjusting for repeated measures. Similarly, we assessed whether the vital sign taker affected vital signs, comparing continuous data before and during manual recording.

RESULTS

From 407 study patients, 271 had contemporaneous continuous and manual recordings, allowing 3740 respiratory rate, 3844 heart rate, and 3896 SpO2 paired measurements for analysis. For the model relating continuous-manual differences to continuous-manual average vital sign values, the regression slope (95% confidence interval) was 0.04 (-0.01 to 0.10; P = .11) for respiratory rate, 0.04 (-0.01 to 0.09; P = .11) for heart rate, and 0.10 (0.07-0.14; P < .001) for SpO2. For SpO2 measurements of 91%, the model predicted a continuous-manual difference (95% confidence interval) of -0.88% (-1.17% to -0.60%). The bias (LoA) between measurement sources was -0.74 (-7.80 to 6.32) breaths/min for respiratory rate, -1.13 (-17.4 to 15.1) beats/min for heart rate, and -0.25% (-3.35% to 2.84%) for SpO2. The bias (LoA) between continuous data before and during manual observation was -0.57 (-5.63 to 4.48) breaths/min for respiratory rate, -0.71 (-10.2 to 8.73) beats/min for heart rate, and -0.07% (-2.67% to 2.54%) for SpO2.

CONCLUSIONS

We found no evidence of data smoothing for heart rate and respiratory rate measurements. Although an effect exists for SpO2 measurements, it was not clinically significant. The wide LoAs between continuous and manually recorded vital signs would commonly result in different early warning scores, impacting clinical care. There was no evidence of an arousal effect caused by the vital sign taker.

摘要

背景

生命体征数据平滑已在麻醉学文献中报道,表明临床工作人员对正常生理测量值存在偏见。然而,这些发现可能部分归因于临床医生从噪声信号中推断出虚假值,以及通过不频繁的手动观察对生理变化进行欠采样。我们使用一种稳健的方法在包括呼吸频率、心率和血氧饱和度(SpO2)在内的大型术后数据集上研究了数据平滑现象。我们还评估了生命体征采集者的存在是否会产生唤醒效应。

方法

研究数据来自英国上消化道术后病房(2009 年 5 月至 2013 年 12 月)。我们将手动记录的生命体征数据与同时从监测设备记录的连续数据进行比较。我们假设,随着生命体征异常的增加,数据平滑会增加生命体征源之间的差异。主要评估方法是一种混合效应模型,将连续-手动差异与生命体征值相关联,同时调整重复测量。我们测试了回归斜率的显著性,并预测了在临床重要生命体征值处的连续-手动差异。我们使用 Bland-Altman 方法(调整重复测量)计算生命体征源之间的界限协议(LoA)。同样,我们比较了在手动记录之前和期间连续数据,评估了生命体征采集者是否会影响生命体征。

结果

从 407 名研究患者中,有 271 名患者同时具有连续和手动记录,允许对 3740 次呼吸频率、3844 次心率和 3896 次 SpO2 配对测量进行分析。对于将连续-手动差异与连续-手动平均生命体征值相关联的模型,回归斜率(95%置信区间)为呼吸率为 0.04(-0.01 至 0.10;P=.11),心率为 0.04(-0.01 至 0.09;P=.11),SpO2 为 0.10(0.07-0.14;P <.001)。对于 SpO2 测量值为 91%,模型预测连续-手动差异(95%置信区间)为-0.88%(-1.17%至-0.60%)。测量源之间的偏差(LoA)为呼吸率为-0.74(-7.80 至 6.32)次/分钟,心率为-1.13(-17.4 至 15.1)次/分钟,SpO2 为-0.25%(-3.35%至 2.84%)。在手动观察之前和期间连续数据之间的偏差(LoA)为呼吸率为-0.57(-5.63 至 4.48)次/分钟,心率为-0.71(-10.2 至 8.73)次/分钟,SpO2 为-0.07%(-2.67%至 2.54%)。

结论

我们没有发现心率和呼吸率测量值存在数据平滑的证据。虽然 SpO2 测量值存在影响,但没有临床意义。连续和手动记录的生命体征之间的宽 LoA 通常会导致不同的早期预警评分,从而影响临床护理。没有证据表明生命体征采集者会产生唤醒效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/026a/6135475/f04afbc95aee/ane-127-0960-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验