Hajj-Ali Zein, Dosso Yasmina Souley, Greenwood Kim, Harrold JoAnn, Green James R
Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.
Clinical Engineering, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada.
Sensors (Basel). 2024 Dec 4;24(23):7753. doi: 10.3390/s24237753.
Depth cameras can provide an effective, noncontact, and privacy-preserving means to monitor patients in the Neonatal Intensive Care Unit (NICU). Clinical interventions and routine care events can disrupt video-based patient monitoring. Automatically detecting these periods can decrease the time required for hand-annotating recordings, which is needed for system development. Moreover, the automatic detection can be used in the future for real-time or retrospective intervention event classification. An intervention detection method based solely on depth data was developed using a vision transformer (ViT) model utilizing real-world data from patients in the NICU. Multiple design parameters were investigated, including encoding of depth data and perspective transform to account for nonoptimal camera placement. The best-performing model utilized ∼85 M trainable parameters, leveraged both perspective transform and HHA (Horizontal disparity, Height above ground, and Angle with gravity) encoding, and achieved a sensitivity of 85.6%, a precision of 89.8%, and an F1-Score of 87.6%.
深度相机可以提供一种有效、非接触且保护隐私的方式来监测新生儿重症监护病房(NICU)中的患者。临床干预和常规护理事件可能会干扰基于视频的患者监测。自动检测这些时间段可以减少系统开发所需的手动标注记录的时间。此外,自动检测未来可用于实时或回顾性干预事件分类。利用NICU中患者的真实世界数据,基于视觉Transformer(ViT)模型开发了一种仅基于深度数据的干预检测方法。研究了多个设计参数,包括深度数据编码和透视变换,以解决相机放置不理想的问题。性能最佳的模型使用了约8500万个可训练参数,利用了透视变换和HHA(水平视差、地面上方高度和重力角度)编码,灵敏度达到85.6%,精度达到89.8%,F1分数达到87.6%。