Suppr超能文献

利用多层回归后分层方法从 Facebook 招募的样本中获取区域健康估计值。

Using multilevel regression with poststratification to obtain regional health estimates from a Facebook-recruited sample.

机构信息

Department of Epidemiology and Biostatistics, Saint Louis University College for Public Health and Social Justice, St. Louis, MO.

Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN.

出版信息

Ann Epidemiol. 2019 Nov;39:15-20.e5. doi: 10.1016/j.annepidem.2019.09.005. Epub 2019 Sep 25.

Abstract

PURPOSE

We assess the effectiveness of multilevel regression with poststratification (MRP) as a tool to mitigate selection bias from online surveys of small geographical regions.

METHODS

We collected self-reported health information from an Internet-based sample of adults residing within the St. Louis, MO, metropolitan area in 2017. We created Bayesian hierarchical models with three sets of predictor variables for each of six common health behaviors and outcomes, with results poststratified using the American Community Survey to estimate region and ZIP Code Tabulation Area-level prevalence.

RESULTS

When comparing MRP estimates with a population-based sample as a reference, we found that adjustment using MRP can reduce bias in prevalence estimates and provide estimates for local area prevalence. 14 of 18 adjusted estimates were closer to the benchmark than the unadjusted estimates and MRP using all three covariate sets resulted in better overall agreement with the benchmark compared with the unadjusted estimates.

CONCLUSIONS

MRP can improve prevalence estimates from self-selected Internet-based samples, although a nonnegligible amount of bias may remain. Illustrating the utility and limitations of this method will help researchers develop relevant estimates of the local public health burden, helping local health officials better understand and reduce poor health outcomes.

摘要

目的

我们评估多层次回归后分层(MRP)作为一种减轻小地理区域在线调查中选择偏差的工具的有效性。

方法

我们于 2017 年从密苏里州圣路易斯大都市区的互联网样本中收集了成年人的自我报告健康信息。我们为六个常见健康行为和结果中的每一个创建了具有三组预测变量的贝叶斯层次模型,并使用美国社区调查进行后分层,以估计区域和邮政编码区层面的流行率。

结果

当将 MRP 估计值与基于人群的样本进行比较作为参考时,我们发现使用 MRP 进行调整可以减少流行率估计值中的偏差,并提供局部区域流行率的估计值。18 个调整后的估计值中有 14 个比未调整的估计值更接近基准值,并且与未调整的估计值相比,使用所有三个协变量集的 MRP 总体上与基准值的一致性更好。

结论

MRP 可以提高自我选择的基于互联网的样本的流行率估计值,尽管仍可能存在不可忽视的偏差。说明这种方法的实用性和局限性将有助于研究人员制定当地公共卫生负担的相关估计值,帮助当地卫生官员更好地了解和减少不良健康结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验