Division of Population Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA 30341. Email:
Division of Population Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia.
Prev Chronic Dis. 2017 Oct 19;14:E99. doi: 10.5888/pcd14.170281.
Local health authorities need small-area estimates for prevalence of chronic diseases and health behaviors for multiple purposes. We generated city-level and census-tract-level prevalence estimates of 27 measures for the 500 largest US cities.
To validate the methodology, we constructed multilevel logistic regressions to predict 10 selected health indicators among adults aged 18 years or older by using 2013 Behavioral Risk Factor Surveillance System (BRFSS) data; we applied their predicted probabilities to census population data to generate city-level, neighborhood-level, and zip-code-level estimates for the city of Boston, Massachusetts.
By comparing the predicted estimates with their corresponding direct estimates from a locally administered survey (Boston BRFSS 2010 and 2013), we found that our model-based estimates for most of the selected health indicators at the city level were close to the direct estimates from the local survey. We also found strong correlation between the model-based estimates and direct survey estimates at neighborhood and zip code levels for most indicators.
Findings suggest that our model-based estimates are reliable and valid at the city level for certain health outcomes. Local health authorities can use the neighborhood-level estimates if high quality local health survey data are not otherwise available.
地方卫生当局需要针对多种目的的慢性病和健康行为的小区域估计值。我们为美国最大的 500 个城市生成了市级和普查地段级别的 27 项措施的流行率估计值。
为了验证该方法,我们使用 2013 年行为风险因素监测系统(BRFSS)数据构建了多水平逻辑回归模型,预测了 18 岁及以上成年人的 10 项选定健康指标;我们将其预测概率应用于普查人口数据,以生成马萨诸塞州波士顿市的市级、邻里级和邮政编码级别的估计值。
通过将预测的估计值与本地进行的调查(波士顿 BRFSS 2010 年和 2013 年)的直接估计值进行比较,我们发现我们的模型基于城市一级的大多数选定健康指标的估计值接近本地调查的直接估计值。我们还发现,在大多数指标上,模型基于的估计值与邻里和邮政编码级别的直接调查估计值之间存在很强的相关性。
研究结果表明,我们的模型基于市级的某些健康结果的估计值是可靠和有效的。如果没有其他高质量的本地健康调查数据,地方卫生当局可以使用邻里级别的估计值。