Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
Nanoscale. 2019 Nov 28;11(44):21207-21217. doi: 10.1039/c9nr08097j. Epub 2019 Oct 30.
Three-layer core-shell-nanoparticle nanoarchitectures exhibit properties not achievable by single-element nanostructures alone and have great potential to enable rationally designed functionality. However, nanofabrication strategies for crafting core-shell-nanoparticle structure arrays on surfaces are widely lacking, despite the potential of basically unlimited material combinations. Here we present a nanofabrication approach that overcomes this limitation. Using it, we produce a library of nanoarchitectures composed of a metal core and an oxide/nitride shell that is decorated with few-nanometer-sized particles with widely different material combinations. This is enabled by resolving a long-standing challenge in this field, namely the ability to grow a shell layer around a nanofabricated core without prior removal of the lithographically patterned mask, and the possibility to subsequently grow smaller metal nanoparticles locally on the shell only in close proximity of the core. Focusing on the application of such nanoarchitectures in plasmonics, we show experimentally and by Finite-Difference Time-Domain (FDTD) simulations that these structures exhibit significant optical absorption enhancement in small metal nanoparticles grown on the few nanometer thin dielectric shell layer around a plasmonic core, and derive design rules to maximize the effect by the tailored combination of the core and shell materials. We predict that these structures will find application in plasmon-mediated catalysis and nanoplasmonic sensing and spectroscopy.
三层核壳纳米颗粒纳米结构具有单一组分纳米结构所不具备的性能,并且具有实现合理设计功能的巨大潜力。然而,尽管具有基本无限的材料组合的潜力,但在表面上构建核壳纳米颗粒结构阵列的纳米制造策略仍然广泛缺乏。在这里,我们提出了一种克服这一限制的纳米制造方法。使用这种方法,我们生产了由金属核和氧化物/氮化物壳组成的纳米结构库,这些纳米结构库上装饰有具有广泛不同材料组合的几纳米大小的颗粒。这是通过解决该领域的一个长期挑战来实现的,即能够在不先去除光刻图案掩模的情况下在纳米制造的核周围生长壳层,并且能够随后仅在靠近核的地方在壳上局部生长较小的金属纳米颗粒。我们专注于这些纳米结构在等离子体学中的应用,通过实验和有限差分时域 (FDTD) 模拟证明,在等离子体核周围的几纳米薄介电壳层上生长的小金属纳米颗粒中,这些结构表现出显著的光吸收增强,并得出了设计规则通过精心组合核心和外壳材料来最大化效果。我们预测这些结构将在等离子体介导的催化和纳米等离子体传感和光谱学中得到应用。