Suppr超能文献

基于 miRNA 表达数据的用于路易体痴呆症的机器学习分类器的比较。

A comparison of machine learning classifiers for dementia with Lewy bodies using miRNA expression data.

机构信息

Laboratory Chief, Division of Genomic Medicine, Medical Genome Center, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan.

Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.

出版信息

BMC Med Genomics. 2019 Oct 30;12(1):150. doi: 10.1186/s12920-019-0607-3.

Abstract

BACKGROUND

Dementia with Lewy bodies (DLB) is the second most common subtype of neurodegenerative dementia in humans following Alzheimer's disease (AD). Present clinical diagnosis of DLB has high specificity and low sensitivity and finding potential biomarkers of prodromal DLB is still challenging. MicroRNAs (miRNAs) have recently received a lot of attention as a source of novel biomarkers.

METHODS

In this study, using serum miRNA expression of 478 Japanese individuals, we investigated potential miRNA biomarkers and constructed an optimal risk prediction model based on several machine learning methods: penalized regression, random forest, support vector machine, and gradient boosting decision tree.

RESULTS

The final risk prediction model, constructed via a gradient boosting decision tree using 180 miRNAs and two clinical features, achieved an accuracy of 0.829 on an independent test set. We further predicted candidate target genes from the miRNAs. Gene set enrichment analysis of the miRNA target genes revealed 6 functional genes included in the DHA signaling pathway associated with DLB pathology. Two of them were further supported by gene-based association studies using a large number of single nucleotide polymorphism markers (BCL2L1: P = 0.012, PIK3R2: P = 0.021).

CONCLUSIONS

Our proposed prediction model provides an effective tool for DLB classification. Also, a gene-based association test of rare variants revealed that BCL2L1 and PIK3R2 were statistically significantly associated with DLB.

摘要

背景

路易体痴呆(DLB)是继阿尔茨海默病(AD)之后人类第二常见的神经退行性痴呆亚型。目前对 DLB 的临床诊断具有高特异性和低敏感性,寻找前驱期 DLB 的潜在生物标志物仍然具有挑战性。microRNAs(miRNAs)作为一种新型生物标志物的来源,最近受到了广泛关注。

方法

在这项研究中,我们使用 478 名日本个体的血清 miRNA 表达,研究了潜在的 miRNA 生物标志物,并基于几种机器学习方法构建了最佳风险预测模型:惩罚回归、随机森林、支持向量机和梯度提升决策树。

结果

最终的风险预测模型是通过梯度提升决策树使用 180 个 miRNA 和两个临床特征构建的,在独立测试集上的准确率为 0.829。我们进一步从 miRNA 预测了候选靶基因。对 miRNA 靶基因的基因集富集分析揭示了与 DLB 病理相关的 DHA 信号通路中的 6 个功能基因。其中两个进一步得到了大量单核苷酸多态性标记物的基于基因的关联研究的支持(BCL2L1:P=0.012,PIK3R2:P=0.021)。

结论

我们提出的预测模型为 DLB 分类提供了有效的工具。此外,罕见变异的基于基因的关联测试表明,BCL2L1 和 PIK3R2 与 DLB 具有统计学显著关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07ae/6822471/3efe4bde074e/12920_2019_607_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验