Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan.
Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
Sci Rep. 2021 Oct 22;11(1):20947. doi: 10.1038/s41598-021-00424-1.
There are many subtypes of dementia, and identification of diagnostic biomarkers that are minimally-invasive, low-cost, and efficient is desired. Circulating microRNAs (miRNAs) have recently gained attention as easily accessible and non-invasive biomarkers. We conducted a comprehensive miRNA expression analysis of serum samples from 1348 Japanese dementia patients, composed of four subtypes-Alzheimer's disease (AD), vascular dementia, dementia with Lewy bodies (DLB), and normal pressure hydrocephalus-and 246 control subjects. We used this data to construct dementia subtype prediction models based on penalized regression models with the multiclass classification. We constructed a final prediction model using 46 miRNAs, which classified dementia patients from an independent validation set into four subtypes of dementia. Network analysis of miRNA target genes revealed important hub genes, SRC and CHD3, associated with the AD pathogenesis. Moreover, MCU and CASP3, which are known to be associated with DLB pathogenesis, were identified from our DLB-specific target genes. Our study demonstrates the potential of blood-based biomarkers for use in dementia-subtype prediction models. We believe that further investigation using larger sample sizes will contribute to the accurate classification of subtypes of dementia.
有许多类型的痴呆症,人们希望找到微创、低成本且高效的诊断生物标志物。循环 microRNAs(miRNAs)最近作为易于获取和非侵入性的生物标志物受到关注。我们对来自 1348 名日本痴呆症患者的血清样本进行了全面的 miRNA 表达分析,这些患者分为四个亚型——阿尔茨海默病(AD)、血管性痴呆、路易体痴呆(DLB)和正常压力脑积水——以及 246 名对照者。我们使用这些数据,基于带有多类分类的惩罚回归模型,构建了痴呆症亚型预测模型。我们使用 46 个 miRNA 构建了最终的预测模型,该模型可将独立验证集中的痴呆症患者分为四个痴呆症亚型。miRNA 靶基因的网络分析揭示了与 AD 发病机制相关的重要枢纽基因 SRC 和 CHD3。此外,我们还从特定于 DLB 的靶基因中鉴定出与 DLB 发病机制相关的 MCU 和 CASP3。我们的研究表明了血液生物标志物在痴呆症亚型预测模型中的应用潜力。我们相信,使用更大的样本量进行进一步研究将有助于准确分类痴呆症的亚型。