Suppr超能文献

朝着 3D 打印支架的多动态机械生物学优化方向,以促进骨再生。

Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration.

机构信息

Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; MINES ParisTech - PSL Research University, Paris, France.

Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.

出版信息

Acta Biomater. 2020 Jan 1;101:117-127. doi: 10.1016/j.actbio.2019.10.029. Epub 2019 Oct 25.

Abstract

Substantial tissue loss, such as in large bone defects, represents a clinical challenge for which regenerative therapies and tissue engineering strategies aim at offering treatment alternatives to conventional replacement approaches by metallic implants. 3D printing technologies provide endless opportunities to shape scaffold structures that could support endogenous regeneration. However, it remains unclear which of the numerous parameters at hand eventually enhance tissue regeneration. In the last decades, a significant effort has been made in the development of computer tools to optimize scaffold designs. Here, we aim at giving a more comprehensive overview summarizing current computer optimization framework technologies. We confront these with the most recent advances in scaffold mechano-biological optimization, discuss their limitations and provide suggestions for future development. We conclude that the field needs to move forward to not only optimize scaffolds to avoid implant failures but to improve their mechano-biological behaviour: providing an initial stimulus for fast tissue organisation and healing and accounting for remodelling, scaffold degradation and consecutive filling with host tissue. So far, modelling approaches fall short in including the various scales of tissue dynamics. With this review, we wish to stimulate a move towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds. STATEMENT OF SIGNIFICANCE: Large bone defects represent a clinical challenge for which tissue engineering strategies aim at offering alternatives to conventional treatment strategies. 3D printing technologies provide endless opportunities to shape scaffold structures that could support endogenous regeneration. However, it remains unclear which of the numerous parameters at hand eventually enhance tissue regeneration. In the last decades, a significant effort has been made in the development of computer tools to optimize scaffold designs. This review summarizes current computer optimization frameworks and most recent advances in mechano-biological optimization of bone scaffolds to better stimulate bone regeneration. We wish to stimulate a move towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds.

摘要

大量的组织损失,如在大的骨缺损中,代表了一个临床挑战,对于这个挑战,再生疗法和组织工程策略旨在通过金属植入物提供替代传统替代方法的治疗选择。3D 打印技术提供了无限的机会来塑造支架结构,这些结构可以支持内源性再生。然而,目前仍不清楚手头的众多参数最终会增强组织再生。在过去的几十年中,人们做出了巨大的努力来开发计算机工具以优化支架设计。在这里,我们旨在更全面地概述当前的计算机优化框架技术。我们将这些技术与支架机械生物学优化的最新进展进行了对比,讨论了它们的局限性,并为未来的发展提供了建议。我们得出的结论是,该领域需要向前发展,不仅要优化支架以避免植入物失效,还要改善其机械生物学行为:为快速组织组织和愈合提供初始刺激,并考虑到重塑、支架降解以及随后的宿主组织填充。到目前为止,建模方法在包括组织动力学的各种尺度方面还存在不足。通过本综述,我们希望激发对 3D 打印支架的多动态机械生物学优化的研究。

意义陈述

大的骨缺损代表了一个临床挑战,对于这个挑战,组织工程策略旨在提供替代传统治疗策略的选择。3D 打印技术提供了无限的机会来塑造支架结构,这些结构可以支持内源性再生。然而,目前仍不清楚手头的众多参数最终会增强组织再生。在过去的几十年中,人们做出了巨大的努力来开发计算机工具以优化支架设计。本综述总结了当前的计算机优化框架以及骨支架机械生物学优化的最新进展,以更好地激发骨再生。我们希望激发对 3D 打印支架的多动态机械生物学优化的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验