Suppr超能文献

使用新型卡迪夫邓普斯特-谢弗理论分类器,从坐姿和站姿重新定位姿势任务中识别非特异性下腰痛临床亚组。

Identifying non-specific low back pain clinical subgroups from sitting and standing repositioning posture tasks using a novel Cardiff Dempster-Shafer Theory Classifier.

作者信息

Sheeran Liba, Sparkes Valerie, Whatling Gemma, Biggs Paul, Holt Cathy

机构信息

School of Healthcare Sciences, Cardiff University, Cardiff, Wales, United Kingdom; Biomechanics and Bioengineering Research Centre Versus Arthritis, Cardiff University, Cardiff, Wales, United Kingdom.

School of Healthcare Sciences, Cardiff University, Cardiff, Wales, United Kingdom; Biomechanics and Bioengineering Research Centre Versus Arthritis, Cardiff University, Cardiff, Wales, United Kingdom.

出版信息

Clin Biomech (Bristol). 2019 Dec;70:237-244. doi: 10.1016/j.clinbiomech.2019.10.004. Epub 2019 Oct 23.

Abstract

BACKGROUND

Low back pain (LBP) classification systems are used to deliver targeted treatments matched to an individual profile, however, distinguishing between different subsets of LBP remains a clinical challenge.

METHODS

A novel application of the Cardiff Dempster-Shafer Theory Classifier was employed to identify clinical subgroups of LBP on the basis of repositioning accuracy for subjects performing a sitting and standing posture task. 87 LBP subjects, clinically subclassified into flexion (n = 50), passive extension (n = 14), and active extension (n = 23) motor control impairment subgroups and 31 subjects with no LBP were recruited. Thoracic, lumbar and pelvic repositioning errors were quantified. The Classifier then transformed the error variables from each subject into a set of three belief values: (i) consistent with no LBP, (ii) consistent with LBP, (iii) indicating either LBP or no LBP.

FINDINGS

In discriminating LBP from no LBP the Classifier accuracy was 96.61%. From no-LBP, subsets of flexion LBP, active extension and passive extension achieved 93.83, 98.15% and 97.62% accuracy, respectively. Classification accuracies of 96.8%, 87.7% and 70.27% were found when discriminating flexion from passive extension, flexion from active extension and active from passive extension subsets, respectively. Sitting lumbar error magnitude best discriminated LBP from no LBP (92.4% accuracy) and the flexion subset from no-LBP (90.1% accuracy). Standing lumbar error best discriminated active and passive extension from no LBP (94.4% and 95.2% accuracy, respectively).

INTERPRETATION

Using repositioning accuracy, the Cardiff Dempster-Shafer Theory Classifier distinguishes between subsets of LBP and could assist decision making for targeted exercise in LBP management.

摘要

背景

腰痛(LBP)分类系统用于提供与个体情况相匹配的针对性治疗,然而,区分不同类型的腰痛仍然是一项临床挑战。

方法

采用卡迪夫邓普斯特-谢弗理论分类器的一种新应用,根据受试者在坐姿和站姿任务中的重新定位准确性来识别腰痛的临床亚组。招募了87名临床上分为屈曲(n = 50)、被动伸展(n = 14)和主动伸展(n = 23)运动控制障碍亚组的腰痛受试者以及31名无腰痛的受试者。对胸、腰和骨盆的重新定位误差进行了量化。然后,该分类器将每个受试者的误差变量转换为一组三个信念值:(i)与无腰痛一致,(ii)与腰痛一致,(iii)表明有腰痛或无腰痛。

研究结果

在区分有腰痛和无腰痛方面,该分类器的准确率为96.61%。在无腰痛组中,屈曲性腰痛、主动伸展和被动伸展亚组的准确率分别达到93.83%、98.15%和97.62%。在区分屈曲与被动伸展亚组、屈曲与主动伸展亚组以及主动与被动伸展亚组时,分类准确率分别为96.8%、87.7%和70.27%。坐姿时的腰椎误差幅度最能区分有腰痛和无腰痛(准确率92.4%)以及屈曲亚组和无腰痛组(准确率90.1%)。站姿时的腰椎误差最能区分主动伸展和被动伸展与无腰痛(准确率分别为94.4%和95.2%)。

解读

利用重新定位准确性,卡迪夫邓普斯特-谢弗理论分类器能够区分不同类型的腰痛,并有助于在腰痛管理中为针对性运动的决策提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66d/7374406/ceeaad169734/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验