Suppr超能文献

基于高分辨率超声的胆囊息肉计算机辅助诊断。

Computer-aided diagnosis of gallbladder polyps based on high resolution ultrasonography.

机构信息

Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800, Dongchuan Road, Shanghai 200240, China.

School of Mathematical Sciences, Shanghai Jiao Tong University, 800, Dongchuran Road, Shanghai 200240 China.

出版信息

Comput Methods Programs Biomed. 2020 Mar;185:105118. doi: 10.1016/j.cmpb.2019.105118. Epub 2019 Oct 9.

Abstract

BACKGROUND AND OBJECTIVE

Gallbladder polyp is a common disease with an overall population prevalence between 4 and 7%. It can be classified as neoplastic and non-neoplastic lesions. Surgical treatment is necessary for neoplastic polyps. Due to its easy accessibility and nonradioactive, ultrasonography is the mostly used preoperative diagnosis tool for gallbladder polyps. However, human image analysis depends greatly on levels of experience, which results in many overtreatment cases and undertreatment cases in clinics.

METHODS

In this study, we proposed an ultrasound image segmentation algorithm, combined with principal components analysis (PCA) and AdaBoost algorithms to construct a computer-aided diagnosis system for the differentiate diagnosis of neoplastic and non-neoplastic gallbladder polyps.

RESULTS

The proposed segmentation method achieved a high accuracy of 95% for outlining the gallbladder region. The accuracy, sensitivity, specificity for the proposed computer-aided diagnosis system based on the segmented images are 87.54%, 86.52% and 89.40%, compared to 69.05%, 67.86% and 70.17% with convolutional neural network. The diagnosis result is also slightly higher than the human eyes of sonologists (86.22%, 85.19% and 89.18% as an average of four sonologists), while with a much faster diagnosis speed (0.02s vs 3s).

CONCLUSIONS

We proposed an efficient ultrasound image segmentation approach and a reliable system of automatic diagonals of neoplastic and non-neoplastic gallbladder polyps. The results show that the diagnosis accuracy is competitive to the expert sonologists while requires much less diagnosis time.

摘要

背景与目的

胆囊息肉是一种常见疾病,总体人群患病率为 4%至 7%。它可以分为肿瘤性和非肿瘤性病变。对于肿瘤性息肉需要进行手术治疗。由于其易于接近且无放射性,超声检查是胆囊息肉术前诊断的主要工具。然而,人体图像分析在很大程度上依赖于经验水平,这导致临床上存在许多过度治疗和治疗不足的情况。

方法

在本研究中,我们提出了一种超声图像分割算法,结合主成分分析(PCA)和 AdaBoost 算法,构建了一个用于区分诊断肿瘤性和非肿瘤性胆囊息肉的计算机辅助诊断系统。

结果

所提出的分割方法在勾勒胆囊区域方面达到了 95%的高精度。与基于卷积神经网络的诊断系统相比,基于分割图像的诊断系统的准确性、敏感性和特异性分别为 87.54%、86.52%和 89.40%,而卷积神经网络的准确性、敏感性和特异性分别为 69.05%、67.86%和 70.17%。该诊断结果也略高于四位超声医生的平均水平(86.22%、85.19%和 89.18%),而诊断速度要快得多(0.02s 与 3s 相比)。

结论

我们提出了一种有效的超声图像分割方法和一种可靠的自动诊断肿瘤性和非肿瘤性胆囊息肉的系统。结果表明,该诊断的准确性可与专家超声医生相媲美,而所需的诊断时间要少得多。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验