Suppr超能文献

GBCHV是一种先进的深度学习解剖感知模型,用于利用超声图像对胆囊癌进行准确分类。

GBCHV an advanced deep learning anatomy aware model for accurate classification of gallbladder cancer utilizing ultrasound images.

作者信息

Hasan Md Zahid, Rony Md Awlad Hossen, Chowa Sadia Sultana, Bhuiyan Md Rahad Islam, Moustafa Ahmed A

机构信息

Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1341, Bangladesh.

School of Psychology, Faculty of Society and Design, Bond University, Gold Coast (City), QLD, Australia.

出版信息

Sci Rep. 2025 Feb 28;15(1):7120. doi: 10.1038/s41598-025-89232-5.

Abstract

This study introduces a novel deep learning approach aimed at accurately classifying Gallbladder Cancer (GBC) into benign, malignant, and normal categories using ultrasound images from the challenging GBC USG (GBCU) dataset. The proposed methodology enhances image quality and specifies gallbladder wall boundaries by employing sophisticated image processing techniques like median filtering and contrast-limited adaptive histogram equalization. Unlike traditional convolutional neural networks, which struggle with complex spatial patterns, the proposed transformer-based model, GBC Horizontal-Vertical Transformer (GBCHV), incorporates a GBCHV-Trans block with self-attention mechanisms. In order to make the model anatomy-aware, the square-shaped input patches of the transformer are transformed into horizontal and vertical strips to obtain distinctive spatial relationships within gallbladder tissues. The novelty of this model lies in its anatomy-aware mechanism, which employs horizontal-vertical strip transformations to depict spatial relationships and complex anatomical features of the gallbladder more accurately. The proposed model achieved an overall diagnostic accuracy of 96.21% by performing an ablation study. A performance comparison between the proposed model and seven transfer learning models is further conducted, where the proposed model consistently outperformed the transfer learning models, showcasing its superior accuracy and robustness. Moreover, the decision-making process of the proposed model is further explained visually through the utilization of Gradient-weighted Class Activation Mapping (Grad-CAM). With the integration of advanced deep learning and image processing techniques, the GBCHV-Trans model offers a promising solution for precise and early-stage classification of GBC, surpassing conventional methods with superior accuracy and diagnostic efficacy.

摘要

本研究介绍了一种新颖的深度学习方法,旨在利用具有挑战性的胆囊癌超声(GBCU)数据集的超声图像,将胆囊癌(GBC)准确分类为良性、恶性和正常类别。所提出的方法通过采用中值滤波和对比度受限自适应直方图均衡化等复杂的图像处理技术来提高图像质量并确定胆囊壁边界。与难以处理复杂空间模式的传统卷积神经网络不同,所提出的基于Transformer的模型,即胆囊癌水平-垂直Transformer(GBCHV),包含一个带有自注意力机制的GBCHV-Trans模块。为了使模型具有解剖学感知能力,Transformer的方形输入补丁被转换为水平和垂直条带,以在胆囊组织内获得独特的空间关系。该模型的新颖之处在于其解剖学感知机制,该机制采用水平-垂直条带变换来更准确地描绘胆囊的空间关系和复杂的解剖特征。通过进行消融研究,所提出的模型实现了96.21%的总体诊断准确率。进一步对所提出的模型与七个迁移学习模型进行了性能比较,结果表明所提出的模型始终优于迁移学习模型,展示了其卓越的准确性和鲁棒性。此外,通过使用梯度加权类激活映射(Grad-CAM),对所提出模型的决策过程进行了可视化进一步解释。通过集成先进的深度学习和图像处理技术,GBCHV-Trans模型为GBC的精确早期分类提供了一个有前景的解决方案,以卓越的准确性和诊断效能超越了传统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/861a/11868569/d31039698dc6/41598_2025_89232_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验