Suppr超能文献

氧化蛋白质修饰的检测、鉴定和定量。

Detection, identification, and quantification of oxidative protein modifications.

机构信息

Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark.

Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark

出版信息

J Biol Chem. 2019 Dec 20;294(51):19683-19708. doi: 10.1074/jbc.REV119.006217. Epub 2019 Oct 31.

Abstract

Exposure of biological molecules to oxidants is inevitable and therefore commonplace. Oxidative stress in cells arises from both external agents and endogenous processes that generate reactive species, either purposely ( during pathogen killing or enzymatic reactions) or accidentally ( exposure to radiation, pollutants, drugs, or chemicals). As proteins are highly abundant and react rapidly with many oxidants, they are highly susceptible to, and major targets of, oxidative damage. This can result in changes to protein structure, function, and turnover and to loss or (occasional) gain of activity. Accumulation of oxidatively-modified proteins, due to either increased generation or decreased removal, has been associated with both aging and multiple diseases. Different oxidants generate a broad, and sometimes characteristic, spectrum of post-translational modifications. The kinetics (rates) of damage formation also vary dramatically. There is a pressing need for reliable and robust methods that can detect, identify, and quantify the products formed on amino acids, peptides, and proteins, especially in complex systems. This review summarizes several advances in our understanding of this complex chemistry and highlights methods that are available to detect oxidative modifications-at the amino acid, peptide, or protein level-and their nature, quantity, and position within a peptide sequence. Although considerable progress has been made in the development and application of new techniques, it is clear that further development is required to fully assess the relative importance of protein oxidation and to determine whether an oxidation is a cause, or merely a consequence, of injurious processes.

摘要

生物分子暴露于氧化剂是不可避免的,因此很常见。细胞中的氧化应激既来自外部因素,也来自产生活性物质的内源性过程,这些活性物质要么是有意的(在病原体杀伤或酶反应期间),要么是无意的(暴露于辐射、污染物、药物或化学物质)。由于蛋白质含量丰富,并且与许多氧化剂迅速反应,因此它们极易受到氧化损伤的影响,并且是氧化损伤的主要靶标。这可能导致蛋白质结构、功能和周转率发生变化,并导致活性丧失或(偶尔)获得。由于生成增加或去除减少,氧化修饰蛋白的积累与衰老和多种疾病都有关。不同的氧化剂会产生广泛的、有时具有特征性的翻译后修饰谱。损伤形成的动力学(速率)也有很大差异。因此迫切需要可靠和稳健的方法来检测、识别和定量氨基酸、肽和蛋白质上形成的产物,尤其是在复杂体系中。这篇综述总结了我们对这种复杂化学的理解的一些进展,并强调了可用于检测氨基酸、肽或蛋白质水平上氧化修饰的方法,以及其性质、数量和在肽序列中的位置。尽管在新技术的开发和应用方面已经取得了相当大的进展,但显然需要进一步发展,以充分评估蛋白质氧化的相对重要性,并确定氧化是损伤过程的原因还是仅仅是后果。

相似文献

1
Detection, identification, and quantification of oxidative protein modifications.
J Biol Chem. 2019 Dec 20;294(51):19683-19708. doi: 10.1074/jbc.REV119.006217. Epub 2019 Oct 31.
2
Molecular chaperones and proteostasis regulation during redox imbalance.
Redox Biol. 2014 Jan 30;2:323-32. doi: 10.1016/j.redox.2014.01.017. eCollection 2014.
4
Quantification of protein modification by oxidants.
Free Radic Biol Med. 2009 Apr 15;46(8):965-88. doi: 10.1016/j.freeradbiomed.2009.01.007. Epub 2009 Jan 21.
5
Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases.
Redox Biol. 2021 Jun;42:101901. doi: 10.1016/j.redox.2021.101901. Epub 2021 Feb 18.
6
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.
7
Oxidative stress and protein aggregation during biological aging.
Exp Gerontol. 2001 Sep;36(9):1539-50. doi: 10.1016/s0531-5565(01)00139-5.
8
Protein oxidation in aging and age-related diseases.
Ann N Y Acad Sci. 2001 Apr;928:22-38. doi: 10.1111/j.1749-6632.2001.tb05632.x.
10
Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.
Free Radic Res. 2015 May;49(5):494-510. doi: 10.3109/10715762.2015.1009053. Epub 2015 Mar 17.

引用本文的文献

1
Assessment of Hydroxyl Radical Reactivity in Sulfur-Containing Amino Acid Models Under Acidic pH.
Int J Mol Sci. 2025 Jul 25;26(15):7203. doi: 10.3390/ijms26157203.
4
Unraveling the interplay between sleep, redox metabolism, and aging: implications for brain health and longevity.
Front Aging. 2025 May 21;6:1605070. doi: 10.3389/fragi.2025.1605070. eCollection 2025.
5
Biological Models of Oxidative Purine DNA Damage in Neurodegenerative Disorders.
Antioxidants (Basel). 2025 May 11;14(5):578. doi: 10.3390/antiox14050578.
7
Effects of oxidative stress on viral infections: an overview.
Npj Viruses. 2025 Apr 12;3(1):27. doi: 10.1038/s44298-025-00110-3.
8
Research progress on the mechanism of curcumin anti-oxidative stress based on signaling pathway.
Front Pharmacol. 2025 Apr 7;16:1548073. doi: 10.3389/fphar.2025.1548073. eCollection 2025.
10
To activate a G protein-coupled receptor permanently with cell surface photodynamic action in the gastrointestinal tract.
World J Gastroenterol. 2025 Mar 28;31(12):102423. doi: 10.3748/wjg.v31.i12.102423.

本文引用的文献

1
Copper ion / HO oxidation of Cu/Zn-Superoxide dismutase: Implications for enzymatic activity and antioxidant action.
Redox Biol. 2019 Sep;26:101262. doi: 10.1016/j.redox.2019.101262. Epub 2019 Jun 28.
2
Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants.
Science. 2019 Jul 5;365(6448):65-69. doi: 10.1126/science.aaw0112.
3
Analysis of protein chlorination by mass spectrometry.
Redox Biol. 2019 Sep;26:101236. doi: 10.1016/j.redox.2019.101236. Epub 2019 Jun 1.
4
Measurement of Protein Persulfidation: Improved Tag-Switch Method.
Methods Mol Biol. 2019;2007:37-50. doi: 10.1007/978-1-4939-9528-8_4.
5
Synthesis, Metabolism, and Signaling Mechanisms of Hydrogen Sulfide: An Overview.
Methods Mol Biol. 2019;2007:1-8. doi: 10.1007/978-1-4939-9528-8_1.
7
Carbon dioxide-catalyzed peroxynitrite reactivity - The resilience of the radical mechanism after two decades of research.
Free Radic Biol Med. 2019 May 1;135:210-215. doi: 10.1016/j.freeradbiomed.2019.02.026. Epub 2019 Feb 25.
8
Hypochlorous acid-modified extracellular matrix contributes to the behavioral switching of human coronary artery smooth muscle cells.
Free Radic Biol Med. 2019 Apr;134:516-526. doi: 10.1016/j.freeradbiomed.2019.01.044. Epub 2019 Feb 1.
9
Immuno-spin trapping of macromolecules free radicals in vitro and in vivo - One stop shopping for free radical detection.
Free Radic Biol Med. 2019 Feb 1;131:318-331. doi: 10.1016/j.freeradbiomed.2018.11.009. Epub 2018 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验