氧化蛋白质修饰的检测、鉴定和定量。
Detection, identification, and quantification of oxidative protein modifications.
机构信息
Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark.
Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
出版信息
J Biol Chem. 2019 Dec 20;294(51):19683-19708. doi: 10.1074/jbc.REV119.006217. Epub 2019 Oct 31.
Exposure of biological molecules to oxidants is inevitable and therefore commonplace. Oxidative stress in cells arises from both external agents and endogenous processes that generate reactive species, either purposely ( during pathogen killing or enzymatic reactions) or accidentally ( exposure to radiation, pollutants, drugs, or chemicals). As proteins are highly abundant and react rapidly with many oxidants, they are highly susceptible to, and major targets of, oxidative damage. This can result in changes to protein structure, function, and turnover and to loss or (occasional) gain of activity. Accumulation of oxidatively-modified proteins, due to either increased generation or decreased removal, has been associated with both aging and multiple diseases. Different oxidants generate a broad, and sometimes characteristic, spectrum of post-translational modifications. The kinetics (rates) of damage formation also vary dramatically. There is a pressing need for reliable and robust methods that can detect, identify, and quantify the products formed on amino acids, peptides, and proteins, especially in complex systems. This review summarizes several advances in our understanding of this complex chemistry and highlights methods that are available to detect oxidative modifications-at the amino acid, peptide, or protein level-and their nature, quantity, and position within a peptide sequence. Although considerable progress has been made in the development and application of new techniques, it is clear that further development is required to fully assess the relative importance of protein oxidation and to determine whether an oxidation is a cause, or merely a consequence, of injurious processes.
生物分子暴露于氧化剂是不可避免的,因此很常见。细胞中的氧化应激既来自外部因素,也来自产生活性物质的内源性过程,这些活性物质要么是有意的(在病原体杀伤或酶反应期间),要么是无意的(暴露于辐射、污染物、药物或化学物质)。由于蛋白质含量丰富,并且与许多氧化剂迅速反应,因此它们极易受到氧化损伤的影响,并且是氧化损伤的主要靶标。这可能导致蛋白质结构、功能和周转率发生变化,并导致活性丧失或(偶尔)获得。由于生成增加或去除减少,氧化修饰蛋白的积累与衰老和多种疾病都有关。不同的氧化剂会产生广泛的、有时具有特征性的翻译后修饰谱。损伤形成的动力学(速率)也有很大差异。因此迫切需要可靠和稳健的方法来检测、识别和定量氨基酸、肽和蛋白质上形成的产物,尤其是在复杂体系中。这篇综述总结了我们对这种复杂化学的理解的一些进展,并强调了可用于检测氨基酸、肽或蛋白质水平上氧化修饰的方法,以及其性质、数量和在肽序列中的位置。尽管在新技术的开发和应用方面已经取得了相当大的进展,但显然需要进一步发展,以充分评估蛋白质氧化的相对重要性,并确定氧化是损伤过程的原因还是仅仅是后果。
相似文献
J Biol Chem. 2019-10-31
Redox Biol. 2014-1-30
Postepy Biochem. 2005
Free Radic Biol Med. 2009-4-15
Exp Gerontol. 2001-9
Ann N Y Acad Sci. 2001-4
Res Rep Health Eff Inst. 2019-3
引用本文的文献
Antioxidants (Basel). 2025-5-11
Npj Viruses. 2025-4-12
Front Pharmacol. 2025-4-7
World J Gastroenterol. 2025-3-28
本文引用的文献
Redox Biol. 2019-6-1
Methods Mol Biol. 2019
Methods Mol Biol. 2019
Free Radic Biol Med. 2018-12-12