Suppr超能文献

微机电陀螺环形谐振器中模态耦合的动态调制

Dynamic modulation of modal coupling in microelectromechanical gyroscopic ring resonators.

作者信息

Zhou Xin, Zhao Chun, Xiao Dingbang, Sun Jiangkun, Sobreviela Guillermo, Gerrard Dustin D, Chen Yunhan, Flader Ian, Kenny Thomas W, Wu Xuezhong, Seshia Ashwin A

机构信息

Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK.

Department of Intelligent Machinery and Instruments, College of Intelligence Science, National University of Defense Technology, Changsha, 410073, China.

出版信息

Nat Commun. 2019 Oct 31;10(1):4980. doi: 10.1038/s41467-019-12796-0.

Abstract

Understanding and controlling modal coupling in micro/nanomechanical devices is integral to the design of high-accuracy timing references and inertial sensors. However, insight into specific physical mechanisms underlying modal coupling, and the ability to tune such interactions is limited. Here, we demonstrate that tuneable mode coupling can be achieved in capacitive microelectromechanical devices with dynamic electrostatic fields enabling strong coupling between otherwise uncoupled modes. A vacuum-sealed microelectromechanical silicon ring resonator is employed in this work, with relevance to the gyroscopic lateral modes of vibration. It is shown that a parametric pumping scheme can be implemented through capacitive electrodes surrounding the device that allows for the mode coupling strength to be dynamically tuned, as well as allowing greater flexibility in the control of the coupling stiffness. Electrostatic pump based sideband coupling is demonstrated, and compared to conventional strain-mediated sideband operations. Electrostatic coupling is shown to be very efficient, enabling strong, tunable dynamical coupling.

摘要

理解和控制微纳机械设备中的模态耦合对于高精度定时基准和惯性传感器的设计至关重要。然而,对模态耦合背后特定物理机制的洞察以及调节此类相互作用的能力是有限的。在此,我们证明了在具有动态静电场的电容式微机电装置中可以实现可调谐模态耦合,从而在原本未耦合的模态之间实现强耦合。本工作采用了与陀螺横向振动模式相关的真空密封微机电硅环谐振器。结果表明,可以通过围绕该装置的电容电极实施一种参数泵浦方案,该方案能够动态调节模态耦合强度,并且在控制耦合刚度方面具有更大的灵活性。展示了基于静电泵的边带耦合,并与传统的应变介导边带操作进行了比较。结果表明,静电耦合非常有效,能够实现强的、可调谐的动态耦合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/362d/6823415/58092d73a688/41467_2019_12796_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验