Suppr超能文献

利用参数对称性破缺增强非线性微机械传感器的灵敏度

Sensitivity enhancement of nonlinear micromechanical sensors using parametric symmetry breaking.

作者信息

Xu Yutao, Yang Qiqi, Song Jiahao, Wei Xueyong

机构信息

State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

出版信息

Microsyst Nanoeng. 2024 Oct 29;10(1):158. doi: 10.1038/s41378-024-00784-4.

Abstract

The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches in response to external forces, we can dramatically boost the sensitivity of MEMS force sensors. Specifically, we first theoretically and experimentally investigate the double hysteresis phenomena of a parametrically driven micromechanical resonator under the interaction of intrinsic nonlinearities and direct external drive. We demonstrate that the double hysteresis is caused by symmetry breaking in the phase states. The frequency response undergoes an additional amplitude jump from the symmetry-breaking-induced parametric isolated branch to the main branch, resulting in double hysteresis in the frequency domain. We further demonstrate that significant force sensitivity enhancement can be achieved by monitoring the dramatic frequency shift of the saddle-node bifurcations on the parametric isolated branches before the bifurcations annihilate. Based on the sensitivity enhancement effect, we propose a new sensing scheme which employs the frequency of the top saddle-node bifurcation in the parametric isolated branches as an output metric to quantify external forces. The concept is verified on a resonant MEMS charge sensor. A sensitivity of up to 39.5 ppm/fC is achieved, significantly surpassing the state-of-the-art resonant charge sensors. This work provides a new mechanism for developing force sensors of high sensitivity.

摘要

谐振传感器的工作机制基于跟踪线性振动范围内的频率变化。与传统模式不同,在本文中,我们表明,通过跟踪非线性参数孤立分支上鞍结分岔在外部力作用下的显著频率变化,我们可以显著提高微机电系统(MEMS)力传感器的灵敏度。具体而言,我们首先从理论和实验上研究了在固有非线性和直接外部驱动相互作用下,参数驱动微机械谐振器的双滞后现象。我们证明双滞后是由相态中的对称性破缺引起的。频率响应会经历从对称性破缺诱导的参数孤立分支到主分支的额外幅度跳跃,从而在频域中产生双滞后。我们进一步证明,通过在鞍结分岔消失之前监测参数孤立分支上鞍结分岔的显著频率变化,可以实现显著的力灵敏度增强。基于灵敏度增强效应,我们提出了一种新的传感方案,该方案采用参数孤立分支中顶部鞍结分岔的频率作为输出指标来量化外力。这一概念在一个谐振MEMS电荷传感器上得到了验证。实现了高达39.5 ppm/fC的灵敏度,显著超过了当前最先进的谐振电荷传感器。这项工作为开发高灵敏度力传感器提供了一种新机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06c2/11519502/602680d400a1/41378_2024_784_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验