Suppr超能文献

RNA聚合酶III的去SUMO化作用处于酵母SUMO应激反应的核心。

Desumoylation of RNA polymerase III lies at the core of the Sumo stress response in yeast.

机构信息

Department of Molecular Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0371 Oslo, Norway; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway.

Department of Molecular Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0371 Oslo, Norway.

出版信息

J Biol Chem. 2019 Dec 6;294(49):18784-18795. doi: 10.1074/jbc.RA119.009721. Epub 2019 Nov 1.

Abstract

Post-translational modification by small ubiquitin-like modifier (Sumo) regulates many cellular processes, including the adaptive response to various types of stress, referred to as the Sumo stress response (SSR). However, it remains unclear whether the SSR involves a common set of core proteins regardless of the type of stress or whether each particular type of stress induces a stress-specific SSR that targets a unique, largely nonoverlapping set of Sumo substrates. In this study, we used MS and a Gene Ontology approach to identify differentially sumoylated proteins during heat stress, hyperosmotic stress, oxidative stress, nitrogen starvation, and DNA alkylation in cells. Our results indicate that each stress triggers a specific SSR signature centered on proteins involved in transcription, translation, and chromatin regulation. Strikingly, whereas the various stress-specific SSRs were largely nonoverlapping, all types of stress tested here resulted in desumoylation of subunits of RNA polymerase III, which correlated with a decrease in tRNA synthesis. We conclude that desumoylation and subsequent inhibition of RNA polymerase III constitutes the core of all stress-specific SSRs in yeast.

摘要

小泛素样修饰物(Sumo)介导的翻译后修饰调控许多细胞过程,包括对各种类型应激的适应性反应,即所谓的Sumo应激反应(SSR)。然而,目前尚不清楚SSR是否涉及一组共同的核心蛋白,而与应激类型无关,或者每种特定类型的应激是否会诱导一种应激特异性的SSR,该SSR靶向一组独特的、基本不重叠的Sumo底物。在本研究中,我们使用质谱(MS)和基因本体论方法来鉴定细胞在热应激、高渗应激、氧化应激、氮饥饿和DNA烷基化过程中差异SUMO化的蛋白质。我们的结果表明,每种应激都会触发一个特定的SSR特征,该特征以参与转录、翻译和染色质调控的蛋白质为中心。引人注目的是,虽然各种应激特异性SSR在很大程度上不重叠,但此处测试的所有应激类型均导致RNA聚合酶III亚基的去SUMO化,这与tRNA合成减少相关。我们得出结论,去SUMO化以及随后对RNA聚合酶III的抑制构成了酵母中所有应激特异性SSR的核心。

相似文献

1
Desumoylation of RNA polymerase III lies at the core of the Sumo stress response in yeast.
J Biol Chem. 2019 Dec 6;294(49):18784-18795. doi: 10.1074/jbc.RA119.009721. Epub 2019 Nov 1.
2
TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1039-1044. doi: 10.1073/pnas.1615093114. Epub 2017 Jan 17.
3
The S. cerevisiae SUMO stress response is a conjugation-deconjugation cycle that targets the transcription machinery.
J Proteomics. 2015 Apr 6;118:39-48. doi: 10.1016/j.jprot.2014.11.012. Epub 2014 Nov 27.
5
SUMO targeting of a stress-tolerant Ulp1 SUMO protease.
PLoS One. 2018 Jan 19;13(1):e0191391. doi: 10.1371/journal.pone.0191391. eCollection 2018.
7
Global analysis of protein sumoylation in Saccharomyces cerevisiae.
J Biol Chem. 2004 Oct 29;279(44):45662-8. doi: 10.1074/jbc.M409203200. Epub 2004 Aug 23.
8
Differential Phosphorylation of RNA Polymerase III and the Initiation Factor TFIIIB in Saccharomyces cerevisiae.
PLoS One. 2015 May 13;10(5):e0127225. doi: 10.1371/journal.pone.0127225. eCollection 2015.
9
Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein.
Biochim Biophys Acta Gene Regul Mech. 2018 Apr;1861(4):320-329. doi: 10.1016/j.bbagrm.2018.01.011. Epub 2018 Feb 6.
10
SUMO Pathway Modulation of Regulatory Protein Binding at the Ribosomal DNA Locus in Saccharomyces cerevisiae.
Genetics. 2016 Apr;202(4):1377-94. doi: 10.1534/genetics.116.187252. Epub 2016 Feb 2.

引用本文的文献

1
Transcriptomic Response of to Variably Inhibitory Environmental Isolates of .
Front Fungal Biol. 2022 Jul 28;3:894590. doi: 10.3389/ffunb.2022.894590. eCollection 2022.
2
Sumoylation is Largely Dispensable for Normal Growth but Facilitates Heat Tolerance in Yeast.
Mol Cell Biol. 2023 Jan;43(1):64-84. doi: 10.1080/10985549.2023.2166320.
4
Waves of sumoylation support transcription dynamics during adipocyte differentiation.
Nucleic Acids Res. 2022 Feb 22;50(3):1351-1369. doi: 10.1093/nar/gkac027.
5
Dynamic sumoylation of promoter-bound general transcription factors facilitates transcription by RNA polymerase II.
PLoS Genet. 2021 Sep 29;17(9):e1009828. doi: 10.1371/journal.pgen.1009828. eCollection 2021 Sep.
6
Coupling Between Cell Cycle Progression and the Nuclear RNA Polymerases System.
Front Mol Biosci. 2021 Aug 2;8:691636. doi: 10.3389/fmolb.2021.691636. eCollection 2021.

本文引用的文献

1
Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.
Nat Commun. 2019 Apr 3;10(1):1523. doi: 10.1038/s41467-019-09234-6.
2
Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters.
PLoS Genet. 2019 Feb 14;15(2):e1007991. doi: 10.1371/journal.pgen.1007991. eCollection 2019 Feb.
3
SUMO Safeguards Somatic and Pluripotent Cell Identities by Enforcing Distinct Chromatin States.
Cell Stem Cell. 2018 Nov 1;23(5):742-757.e8. doi: 10.1016/j.stem.2018.10.001. Epub 2018 Oct 25.
4
The PRIDE database and related tools and resources in 2019: improving support for quantification data.
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450. doi: 10.1093/nar/gky1106.
5
Centromeres License the Mitotic Condensation of Yeast Chromosome Arms.
Cell. 2018 Oct 18;175(3):780-795.e15. doi: 10.1016/j.cell.2018.09.012. Epub 2018 Oct 11.
7
Regulation of tRNA synthesis by posttranslational modifications of RNA polymerase III subunits.
Biochim Biophys Acta Gene Regul Mech. 2018 Apr;1861(4):310-319. doi: 10.1016/j.bbagrm.2017.11.001. Epub 2017 Nov 7.
8
Identification of SUMO conjugation sites in the budding yeast proteome.
Microb Cell. 2017 Oct 2;4(10):331-341. doi: 10.15698/mic2017.10.593.
9
TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1039-1044. doi: 10.1073/pnas.1615093114. Epub 2017 Jan 17.
10
The Perseus computational platform for comprehensive analysis of (prote)omics data.
Nat Methods. 2016 Sep;13(9):731-40. doi: 10.1038/nmeth.3901. Epub 2016 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验