Suppr超能文献

基于变点分段的跑步疲劳分类新方法

A Novel Method for Classification of Running Fatigue Using Change-Point Segmentation.

机构信息

Centre of Artificial Intelligence, School of information technology, Halmstad University, SE-301 18 Halmstad, Sweden.

Rydberg Laboratory of Applied Science, School of business, engineering and science, Halmstad University, SE-301 18 Halmstad, Sweden.

出版信息

Sensors (Basel). 2019 Oct 31;19(21):4729. doi: 10.3390/s19214729.

Abstract

Blood lactate accumulation is a crucial fatigue indicator during sports training. Previous studies have predicted cycling fatigue using surface-electromyography (sEMG) to non-invasively estimate lactate concentration in blood. This study used sEMG to predict muscle fatigue while running and proposes a novel method for the automatic classification of running fatigue based on sEMG. Data were acquired from 12 runners during an incremental treadmill running-test using sEMG sensors placed on the vastus-lateralis, vastus-medialis, biceps-femoris, semitendinosus, and gastrocnemius muscles of the right and left legs. Blood lactate samples of each runner were collected every two minutes during the test. A change-point segmentation algorithm labeled each sample with a class of fatigue level as (1) aerobic, (2) anaerobic, or (3) recovery. Three separate random forest models were trained to classify fatigue using 36 frequency, 51 time-domain, and 36 time-event sEMG features. The models were optimized using a forward sequential feature elimination algorithm. Results showed that the random forest trained using distributive power frequency of the sEMG signal of the vastus-lateralis muscle alone could classify fatigue with high accuracy. Importantly for this feature, group-mean ranks were significantly different ( < 0.01) between fatigue classes. Findings support using this model for monitoring fatigue levels during running.

摘要

血液乳酸积累是运动训练中至关重要的疲劳指标。先前的研究已经使用表面肌电图(sEMG)来预测自行车疲劳,从而无创估计血液中的乳酸浓度。本研究使用 sEMG 来预测跑步时的肌肉疲劳,并提出了一种基于 sEMG 的跑步疲劳自动分类的新方法。使用放置在右腿和左腿的股外侧肌、股内侧肌、股二头肌、半腱肌和腓肠肌上的 sEMG 传感器,从 12 名跑步者在递增跑步机跑步测试中获取数据。在测试过程中,每两分钟采集每位跑步者的血液乳酸样本。一个变点分割算法将每个样本标记为疲劳水平的一个类别,即(1)有氧,(2)无氧,或(3)恢复。使用 36 个频率、51 个时域和 36 个时间事件 sEMG 特征,分别训练了三个独立的随机森林模型来对疲劳进行分类。使用前向顺序特征消除算法对模型进行了优化。结果表明,单独使用股外侧肌 sEMG 信号的分布功率频率训练的随机森林可以非常准确地分类疲劳。对于该特征,重要的是,疲劳等级之间的组平均等级差异显著(<0.01)。研究结果支持使用该模型来监测跑步时的疲劳水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/6864433/9c29afc7f87c/sensors-19-04729-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验