Pallarés Jesús G, Morán-Navarro Ricardo, Ortega Juan Fernando, Fernández-Elías Valentín Emilio, Mora-Rodriguez Ricardo
University of Castilla-La Mancha, Exercise Physiology Laboratory at Toledo, Toledo, Spain.
Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain.
PLoS One. 2016 Sep 22;11(9):e0163389. doi: 10.1371/journal.pone.0163389. eCollection 2016.
The purpose of this study was to determine, i) the reliability of blood lactate and ventilatory-based thresholds, ii) the lactate threshold that corresponds with each ventilatory threshold (VT1 and VT2) and with maximal lactate steady state test (MLSS) as a proxy of cycling performance.
Fourteen aerobically-trained male cyclists ([Formula: see text] 62.1±4.6 ml·kg-1·min-1) performed two graded exercise tests (50 W warm-up followed by 25 W·min-1) to exhaustion. Blood lactate, [Formula: see text] and [Formula: see text] data were collected at every stage. Workloads at VT1 (rise in [Formula: see text];) and VT2 (rise in [Formula: see text]) were compared with workloads at lactate thresholds. Several continuous tests were needed to detect the MLSS workload. Agreement and differences among tests were assessed with ANOVA, ICC and Bland-Altman. Reliability of each test was evaluated using ICC, CV and Bland-Altman plots.
Workloads at lactate threshold (LT) and LT+2.0 mMol·L-1 matched the ones for VT1 and VT2, respectively (p = 0.147 and 0.539; r = 0.72 and 0.80; Bias = -13.6 and 2.8, respectively). Furthermore, workload at LT+0.5 mMol·L-1 coincided with MLSS workload (p = 0.449; r = 0.78; Bias = -4.5). Lactate threshold tests had high reliability (CV = 3.4-3.7%; r = 0.85-0.89; Bias = -2.1-3.0) except for DMAX method (CV = 10.3%; r = 0.57; Bias = 15.4). Ventilatory thresholds show high reliability (CV = 1.6%-3.5%; r = 0.90-0.96; Bias = -1.8-2.9) except for RER = 1 and V-Slope (CV = 5.0-6.4%; r = 0.79; Bias = -5.6-12.4).
Lactate threshold tests can be a valid and reliable alternative to ventilatory thresholds to identify the workloads at the transition from aerobic to anaerobic metabolism.
本研究的目的是确定,i)血乳酸和基于通气的阈值的可靠性,ii)与每个通气阈值(VT1和VT2)以及与作为骑行表现指标的最大乳酸稳态测试(MLSS)相对应的乳酸阈值。
14名经过有氧训练的男性自行车运动员([公式:见正文]62.1±4.6毫升·千克-1·分钟-1)进行了两次渐增负荷运动测试(先进行50瓦的热身,然后以25瓦·分钟-1的速度递增)直至力竭。在每个阶段收集血乳酸、[公式:见正文]和[公式:见正文]数据。将VT1([公式:见正文]上升时)和VT2([公式:见正文]上升时)的负荷与乳酸阈值时的负荷进行比较。需要进行几次连续测试来检测MLSS负荷。使用方差分析、组内相关系数(ICC)和布兰德-奥特曼分析评估测试之间的一致性和差异。使用ICC、变异系数(CV)和布兰德-奥特曼图评估每个测试的可靠性。
乳酸阈值(LT)和LT + 2.0毫摩尔·升-1时的负荷分别与VT1和VT(p = 0.147和0.539;r = 0.72和0.80;偏差分别为-13.6和2.8)的负荷相匹配。此外,LT + 0.5毫摩尔·升-1时的负荷与MLSS负荷一致(p = 0.449;r = 0.78;偏差 = -4.5)。除DMAX方法外(CV = 10.3%;r = 0.57;偏差 = 15.4),乳酸阈值测试具有较高的可靠性(CV = 3.4 - 3.7%;r = 0.85 - 0.89;偏差 = -2.1 - 3.0)。除呼吸商(RER)= 1和V - 斜率外(CV = 5.0 - 6.4%;r = 0.79;偏差 = -5.6 - 12.4),通气阈值显示出较高的可靠性(CV = 1.6% - 3.5%;r = 0.90 - 0.96;偏差 = -1.8 - 2.9)。
乳酸阈值测试可以作为一种有效且可靠的替代方法,用于识别从有氧代谢向无氧代谢转变时的负荷,以替代通气阈值测试。