Suppr超能文献

自主穿戴式系统,用于预测和检测局部肌肉疲劳。

An autonomous wearable system for predicting and detecting localised muscle fatigue.

机构信息

School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK.

出版信息

Sensors (Basel). 2011;11(2):1542-57. doi: 10.3390/s110201542. Epub 2011 Jan 27.

Abstract

Muscle fatigue is an established area of research and various types of muscle fatigue have been clinically investigated in order to fully understand the condition. This paper demonstrates a non-invasive technique used to automate the fatigue detection and prediction process. The system utilises the clinical aspects such as kinematics and surface electromyography (sEMG) of an athlete during isometric contractions. Various signal analysis methods are used illustrating their applicability in real-time settings. This demonstrated system can be used in sports scenarios to promote muscle growth/performance or prevent injury. To date, research on localised muscle fatigue focuses on the clinical side and lacks the implementation for detecting/predicting localised muscle fatigue using an autonomous system. Results show that automating the process of localised muscle fatigue detection/prediction is promising. The autonomous fatigue system was tested on five individuals showing 90.37% accuracy on average of correct classification and an error of 4.35% in predicting the time to when fatigue will onset.

摘要

肌肉疲劳是一个既定的研究领域,为了全面了解这种情况,已经对各种类型的肌肉疲劳进行了临床研究。本文展示了一种用于自动化疲劳检测和预测过程的非侵入性技术。该系统利用运动员在等长收缩期间的临床方面,如运动学和表面肌电图(sEMG)。使用各种信号分析方法来展示它们在实时设置中的适用性。该演示系统可用于运动场景,以促进肌肉生长/表现或预防受伤。迄今为止,针对局部肌肉疲劳的研究侧重于临床方面,缺乏使用自主系统检测/预测局部肌肉疲劳的实施。结果表明,自动化局部肌肉疲劳检测/预测过程具有很大的发展前景。自主疲劳系统在五个人身上进行了测试,平均正确分类准确率为 90.37%,预测疲劳发作时间的误差为 4.35%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa7/3274008/b9377c9721f1/sensors-11-01542f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验