Suppr超能文献

枯草芽孢杆菌中双向 pH 趋性的作用机制。

The Mechanism of Bidirectional pH Taxis in Bacillus subtilis.

机构信息

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

出版信息

J Bacteriol. 2020 Jan 29;202(4). doi: 10.1128/JB.00491-19.

Abstract

We investigated pH taxis in This bacterium was found to perform bidirectional taxis in response to external pH gradients, enabling it to preferentially migrate to neutral environments. We next investigated the chemoreceptors involved in sensing pH gradients. We identified four chemoreceptors involved in sensing pH: McpA and TlpA for sensing acidic environments and McpB and TlpB for sensing alkaline ones. In addition, TlpA was found to also weakly sense alkaline environments. By analyzing chimeras between McpA and TlpB, the principal acid- and base-sensing chemoreceptors, we identified four critical amino acid residues-Thr, Gln, His, and Glu on McpA and Lys, Glu, Gln, and Asp on TlpB-involved in sensing pH. Swapping these four residues between McpA and TlpB converted the former into a base receptor and the latter into an acid receptor. Based on the results, we propose that disruption of hydrogen bonding between the adjacent residues upon pH changes induces signaling. Collectively, our results further our understanding of chemotaxis in and provide a new model for pH sensing in bacteria. Many bacteria can sense the pH in their environment and then use this information to direct their movement toward more favorable locations. In this study, we investigated the pH sensing mechanism in This bacterium preferentially migrates to neutral environments. It employs four chemoreceptors to sense pH. Two are involved in sensing acidic environments, and two are involved in sensing alkaline ones. To identify the mechanism for pH sensing, we constructed receptor chimeras of acid- and base-sensing chemoreceptors. By analyzing the responses of these chimeric receptors, we were able to identify four critical amino acid residues involved in pH sensing and propose a model for the pH sensing mechanism in .

摘要

我们研究了这种细菌的 pH 趋性。研究发现,这种细菌能够对外界 pH 梯度做出双向趋性反应,从而优先迁移到中性环境。接下来,我们研究了参与感知 pH 梯度的化学感受器。我们确定了四种参与感知 pH 的化学感受器:McpA 和 TlpA 用于感知酸性环境,而 McpB 和 TlpB 则用于感知碱性环境。此外,还发现 TlpA 也能微弱地感知碱性环境。通过分析 McpA 和 TlpB 之间的嵌合体,即主要的酸和碱感受器,我们确定了 McpA 上四个关键的氨基酸残基-Thr、Gln、His 和 Glu,以及 TlpB 上的 Lys、Glu、Gln 和 Asp,这些残基参与 pH 感应。在 McpA 和 TlpB 之间交换这四个残基,可将前者转化为碱基受体,后者转化为酸受体。基于这些结果,我们提出 pH 变化导致相邻残基之间氢键的破坏,从而引发信号转导。总的来说,我们的研究结果进一步加深了我们对 趋化作用的理解,并为细菌的 pH 感应提供了新的模型。许多细菌可以感知环境中的 pH 值,然后利用这些信息来指导它们向更有利的位置移动。在这项研究中,我们研究了 中的 pH 感应机制。这种细菌优先迁移到中性环境中。它使用四个化学感受器来感知 pH 值。其中两个参与感知酸性环境,另外两个参与感知碱性环境。为了确定 pH 感应的机制,我们构建了酸和碱感受器的受体嵌合体。通过分析这些嵌合体受体的反应,我们能够确定参与 pH 感应的四个关键氨基酸残基,并提出了一种用于 pH 感应机制的模型。

相似文献

1
The Mechanism of Bidirectional pH Taxis in Bacillus subtilis.
J Bacteriol. 2020 Jan 29;202(4). doi: 10.1128/JB.00491-19.
2
3
Characterization of Opposing Responses to Phenol by Bacillus subtilis Chemoreceptors.
J Bacteriol. 2022 Apr 19;204(4):e0044121. doi: 10.1128/JB.00441-21. Epub 2022 Jan 10.
4
Noncanonical Sensing Mechanisms for Bacillus subtilis Chemoreceptors.
J Bacteriol. 2022 Apr 19;204(4):e0002722. doi: 10.1128/jb.00027-22. Epub 2022 Mar 24.
5
pH Sensing in Bacillus subtilis: a New Path to a Common Goal.
J Bacteriol. 2020 Jan 29;202(4). doi: 10.1128/JB.00701-19.
6
Selective methylation changes on the Bacillus subtilis chemotaxis receptor McpB promote adaptation.
J Biol Chem. 2000 Aug 11;275(32):24264-72. doi: 10.1074/jbc.M004001200.
8
The role of heterologous receptors in McpB-mediated signalling in Bacillus subtilis chemotaxis.
Mol Microbiol. 2002 Jul;45(2):555-68. doi: 10.1046/j.1365-2958.2002.03035.x.
10
Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis.
J Biol Chem. 2002 Jul 12;277(28):25356-62. doi: 10.1074/jbc.M201334200. Epub 2002 May 13.

引用本文的文献

2
Spatially resolved analysis of microenvironmental gradient impact on cancer cell phenotypes.
Sci Adv. 2024 May 3;10(18):eadn3448. doi: 10.1126/sciadv.adn3448.
3
Active pH regulation facilitates biofilm development in a minimally buffered environment.
mBio. 2024 Mar 13;15(3):e0338723. doi: 10.1128/mbio.03387-23. Epub 2024 Feb 13.
5
The pH Robustness of Bacterial Sensing.
mBio. 2022 Oct 26;13(5):e0165022. doi: 10.1128/mbio.01650-22. Epub 2022 Sep 26.
6
Analysis of CheW-like domains provides insights into organization of prokaryotic chemotaxis systems.
Proteins. 2023 Mar;91(3):315-329. doi: 10.1002/prot.26430. Epub 2022 Oct 6.
7
Signal binding at both modules of its dCache domain enables the McpA chemoreceptor of to sense different ligands.
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2201747119. doi: 10.1073/pnas.2201747119. Epub 2022 Jul 13.
8
Differential Phototactic Behavior of Closely Related Cyanobacterial Isolates from Yellowstone Hot Spring Biofilms.
Appl Environ Microbiol. 2022 May 24;88(10):e0019622. doi: 10.1128/aem.00196-22. Epub 2022 May 2.
9
Characterization of Opposing Responses to Phenol by Bacillus subtilis Chemoreceptors.
J Bacteriol. 2022 Apr 19;204(4):e0044121. doi: 10.1128/JB.00441-21. Epub 2022 Jan 10.

本文引用的文献

1
HMMER web server: 2018 update.
Nucleic Acids Res. 2018 Jul 2;46(W1):W200-W204. doi: 10.1093/nar/gky448.
2
Helicobacter pylori chemoreceptor TlpC mediates chemotaxis to lactate.
Sci Rep. 2017 Oct 26;7(1):14089. doi: 10.1038/s41598-017-14372-2.
3
Sensory Repertoire of Bacterial Chemoreceptors.
Microbiol Mol Biol Rev. 2017 Oct 25;81(4). doi: 10.1128/MMBR.00033-17. Print 2017 Dec.
4
CRISPy-web: An online resource to design sgRNAs for CRISPR applications.
Synth Syst Biotechnol. 2016 Feb 12;1(2):118-121. doi: 10.1016/j.synbio.2016.01.003. eCollection 2016 Jun.
5
Programmatic access to bioinformatics tools from EMBL-EBI update: 2017.
Nucleic Acids Res. 2017 Jul 3;45(W1):W550-W553. doi: 10.1093/nar/gkx273.
6
Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
Appl Environ Microbiol. 2016 Aug 15;82(17):5421-7. doi: 10.1128/AEM.01453-16. Print 2016 Sep 1.
7
Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes.
PLoS Comput Biol. 2016 Apr 6;12(4):e1004862. doi: 10.1371/journal.pcbi.1004862. eCollection 2016 Apr.
8
Structural basis for amino-acid recognition and transmembrane signalling by tandem Per-Arnt-Sim (tandem PAS) chemoreceptor sensory domains.
Acta Crystallogr D Biol Crystallogr. 2015 Oct;71(Pt 10):2127-36. doi: 10.1107/S139900471501384X. Epub 2015 Sep 30.
10
Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing.
Appl Environ Microbiol. 2014 Jun;80(11):3404-15. doi: 10.1128/AEM.00115-14. Epub 2014 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验