Suppr超能文献

学习微生物-代谢物相互作用的表示。

Learning representations of microbe-metabolite interactions.

机构信息

Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.

Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.

出版信息

Nat Methods. 2019 Dec;16(12):1306-1314. doi: 10.1038/s41592-019-0616-3. Epub 2019 Nov 4.

Abstract

Integrating multiomics datasets is critical for microbiome research; however, inferring interactions across omics datasets has multiple statistical challenges. We solve this problem by using neural networks (https://github.com/biocore/mmvec) to estimate the conditional probability that each molecule is present given the presence of a specific microorganism. We show with known environmental (desert soil biocrust wetting) and clinical (cystic fibrosis lung) examples, our ability to recover microbe-metabolite relationships, and demonstrate how the method can discover relationships between microbially produced metabolites and inflammatory bowel disease.

摘要

整合多组学数据集对于微生物组研究至关重要;然而,推断组学数据集之间的相互作用存在多个统计挑战。我们通过使用神经网络(https://github.com/biocore/mmvec)来估计给定特定微生物存在时每个分子存在的条件概率来解决这个问题。我们通过已知的环境(沙漠土壤生物结皮润湿)和临床(囊性纤维化肺)示例展示了我们恢复微生物 - 代谢物关系的能力,并演示了该方法如何发现微生物产生的代谢物与炎症性肠病之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d27e/6884698/49d4e12b744e/nihms-1540415-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验