Institute for Cell and Molecular Biosciences, The Medical School , Newcastle University , Framlington Place , Newcastle-upon-Tyne NE2 4HH , U.K.
College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China.
Biochemistry. 2019 Dec 3;58(48):4882-4892. doi: 10.1021/acs.biochem.9b00705. Epub 2019 Nov 13.
Numerous bacterial toxins and other virulence factors use low pH as a trigger to convert from water-soluble to membrane-inserted states. In the case of colicins, the pore-forming domain of colicin A (ColA-P) has been shown both to undergo a clear acidic unfolding transition and to require acidic lipids in the cytoplasmic membrane, whereas its close homologue colicin N shows neither behavior. Compared to that of ColN-P, the ColA-P primary structure reveals the replacement of several uncharged residues with aspartyl residues, which upon replacement with alanine induce an unfolded state at neutral pH. Here we investigate ColA-P's structural requirement for these critical aspartyl residues that are largely situated at the N-termini of α helices. As previously shown in model peptides, the charged carboxylate side chain can act as a stabilizing helix N-Cap group by interacting with free amide hydrogen bond donors. Because this could explain ColA-P destabilization when the aspartyl residues are protonated or replaced with alanyl residues, we test the hypothesis by inserting asparagine, glutamine, and glutamate residues at these sites. We combine urea (fluorescence and circular dichroism) and thermal (circular dichroism and differential scanning calorimetry) denaturation experiments with H-N heteronuclear single-quantum coherence nuclear magnetic resonance spectroscopy of ColA-P at different pH values to provide a comprehensive description of the unfolding process and confirm the N-Cap hypothesis. Furthermore, we reveal that, in urea, the single domain ColA-P unfolds in two steps; low pH destabilizes the first step and stabilizes the second.
许多细菌毒素和其他毒力因子利用低 pH 值作为触发因素,从水溶性状态转化为插入膜的状态。就肠毒素(colicin)而言,已证明 colicin A(ColA-P)的孔形成结构域既经历了明显的酸性去折叠转变,又需要细胞质膜中的酸性脂质,而其密切同源物 colicin N 则没有表现出这两种行为。与 ColN-P 相比,ColA-P 的一级结构揭示了几个不带电荷的残基被天冬氨酸残基取代,这些残基被替换为丙氨酸时会在中性 pH 值下诱导非折叠状态。在这里,我们研究了 ColA-P 对这些关键天冬氨酸残基的结构要求,这些残基主要位于α螺旋的 N 端。如前在模型肽中所示,带电荷的羧酸盐侧链可以通过与游离酰胺氢键供体相互作用,充当稳定的螺旋 N-Cap 基团。因为这可以解释当天冬氨酸残基被质子化或被丙氨酸残基取代时 ColA-P 的不稳定,我们通过在这些位置插入天冬酰胺、谷氨酰胺和谷氨酸残基来检验这一假设。我们将尿素(荧光和圆二色性)和热(圆二色性和差示扫描量热法)变性实验与 ColA-P 在不同 pH 值下的 H-N 异核单量子相干核磁共振波谱学相结合,提供了对展开过程的全面描述,并证实了 N-Cap 假说。此外,我们揭示了在尿素中,单域 ColA-P 分两步展开;低 pH 值会使第一步失稳并使第二步稳定。