Xiao Yuguang, Zhang Xiaoshu, Liu Jun, Li He, Jiang Jingmin, Li Yanjie, Diao Shu
Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China.
School of Civil Engineering and Architecture, Xinxiang University, Xinxiang, China.
Front Plant Sci. 2024 May 3;15:1346192. doi: 10.3389/fpls.2024.1346192. eCollection 2024.
Currently the determination of cyanidin 3-rutinoside content in plant petals usually requires chemical assays or high performance liquid chromatography (HPLC), which are time-consuming and laborious. In this study, we aimed to develop a low-cost, high-throughput method to predict cyanidin 3-rutinoside content, and developed a cyanidin 3-rutinoside prediction model using near-infrared (NIR) spectroscopy combined with partial least squares regression (PLSR). We collected spectral data from (Magnoliaceae) tepals and used five different preprocessing methods and four variable selection algorithms to calibrate the PLSR model to determine the best prediction model. The results showed that (1) the PLSR model built by combining the blockScale (BS) preprocessing method and the Significance multivariate correlation (sMC) algorithm performed the best; (2) The model has a reliable prediction ability, with a coefficient of determination (R) of 0.72, a root mean square error (RMSE) of 1.04%, and a residual prediction deviation (RPD) of 2.06. The model can be effectively used to predict the cyanidin 3-rutinoside content of the perianth slices of , providing an efficient method for the rapid determination of cyanidin 3-rutinoside content.
目前,测定植物花瓣中矢车菊素3 - 芸香糖苷的含量通常需要化学分析或高效液相色谱法(HPLC),这些方法既耗时又费力。在本研究中,我们旨在开发一种低成本、高通量的方法来预测矢车菊素3 - 芸香糖苷的含量,并利用近红外(NIR)光谱结合偏最小二乘回归(PLSR)建立了矢车菊素3 - 芸香糖苷预测模型。我们收集了木兰科植物花被片的光谱数据,并使用五种不同的预处理方法和四种变量选择算法对PLSR模型进行校准,以确定最佳预测模型。结果表明:(1)结合块尺度(BS)预处理方法和显著性多元相关(sMC)算法建立的PLSR模型表现最佳;(2)该模型具有可靠的预测能力,决定系数(R)为0.72,均方根误差(RMSE)为1.04%,剩余预测偏差(RPD)为2.06。该模型可有效用于预测木兰科植物花被片的矢车菊素3 - 芸香糖苷含量,为快速测定矢车菊素3 - 芸香糖苷含量提供了一种有效方法。