Suppr超能文献

利用计算流体动力学对挤压瓶鼻腔冲洗流的特性进行描述。

Characterization of nasal irrigation flow from a squeeze bottle using computational fluid dynamics.

机构信息

School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia.

Department of Otolaryngology, Head and Neck Surgery, Westmead Hospital, Sydney, NSW, Australia.

出版信息

Int Forum Allergy Rhinol. 2020 Jan;10(1):29-40. doi: 10.1002/alr.22476. Epub 2019 Nov 6.

Abstract

BACKGROUND

Nasal saline irrigation has become standard of care in various sinonasal conditions, including allergic and nonallergic rhinitis, chronic rhinosinusitis, and in the postoperative patient. Evidence regarding the mechanisms and dynamics of liquid flow through the sinonasal cavity remains limited due to inadequate experimental models (cadaveric, 3-dimensional [3D] printed, imaging of labeled dyes and radioisotopes). We aimed to develop a computational fluid dynamics (CFD) model of nasal irrigation to demonstrate sinonasal surface coverage, residence times across the mucosal surfaces, and shearing force of irrigation.

METHODS

A nasal cavity geometry derived from high-resolution paranasal sinus computed tomography (CT) scans of a healthy, unoperated, 25-year-old patient was created. CFD analysis was performed to assess the distribution of nasal irrigation from a tapered nozzle bottle at a forward head-tilt position of 45 degrees with a 2-second burst at 35 mL/second.

RESULTS

The model demonstrates nasal irrigation from ipsilateral to contralateral with precise measures of velocity, pressure, wall shear stress, and mapping of surface coverage and residence times at specific locations and times. The nasal cavity experiences almost complete coverage of irrigation, while overflow from the nasal cavity facilitates moderate coverage of the ipsilateral maxillary (40%) and anterior ethmoid sinuses (30%). Negligible coverage of the sphenoid and frontal sinuses was noted.

CONCLUSION

Detailed physical mechanisms of liquid irrigation injected from a commonly used squeeze bottle were shown. Ipsilateral maxillary and ethmoid sinus penetration are primarily due to overflow rather than direct jet entry, confirming the recommendation of larger volumes of irrigation to "flood" the sinus ostia.

摘要

背景

鼻腔盐水冲洗已成为各种鼻-鼻窦疾病的标准治疗方法,包括变应性和非变应性鼻炎、慢性鼻-鼻窦炎以及术后患者。由于缺乏合适的实验模型(尸体、3 维[3D]打印、标记染料和放射性同位素的成像),关于液体在鼻-鼻窦腔中流动的机制和动力学的证据仍然有限。我们旨在开发鼻腔冲洗的计算流体动力学(CFD)模型,以展示鼻-鼻窦表面覆盖范围、黏膜表面的停留时间以及冲洗的剪切力。

方法

从一名健康、未手术的 25 岁患者的高分辨率鼻窦计算机断层扫描(CT)扫描中获得鼻腔几何形状。使用 CFD 分析评估在 45 度前倾头位下,从锥形喷嘴瓶以 35 毫升/秒的 2 秒脉冲进行鼻腔冲洗时的分布情况。

结果

该模型演示了从同侧到对侧的鼻腔冲洗,具有精确的速度、压力、壁面剪切应力测量值,以及特定位置和时间的表面覆盖范围和停留时间的映射。鼻腔几乎完全被冲洗液覆盖,而从鼻腔溢出有助于对同侧上颌窦(40%)和前筛窦(30%)进行适度覆盖。蝶窦和额窦几乎没有被覆盖。

结论

显示了从常用挤压瓶中注入的液体冲洗的详细物理机制。同侧上颌窦和筛窦的穿透主要是由于溢出而不是直接喷射进入,证实了推荐使用更大体积的冲洗液“淹没”窦口的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验