Belliato Mirko, Caneva Luca, Aina Alessandro, Degani Antonella, Mongodi Silvia, Prahl Wittberg Lisa, Pellegrini Carlo, Broman Lars M, Iotti Giorgio Antonio
UOC Anestesia e Rianimazione, IRCCS Policlinico San Matteo, Pavia, Italy.
Department of Cardiac Surgery and Cardiovascular Perfusion,Ospedale San Raffaele Milano, Italy.
Int J Artif Organs. 2020 Apr;43(4):268-276. doi: 10.1177/0391398819882024. Epub 2019 Nov 6.
Veno-venous arterial extracorporeal membrane oxygenation is a hybrid-modality of extracorporeal membrane oxygenation combining veno-venous and veno-arterial extracorporeal membrane oxygenation. It may be applied to patients with both respiratory and cardio-circulatory failure.
To describe a computational spreadsheet regarding an ex vivo experimental model of veno-venous arterial extracorporeal membrane oxygenation to determine the return of cannula pairs in a single pump-driven circuit.
We developed an ex vivo model of veno-venous arterial extracorporeal membrane oxygenation with a single pump and two outflow cannulas, and a glucose solution was used to mimic the features of blood. We maintained a fixed aortic impedance and physiological pulmonary resistance. Both flow and pressure data were collected while testing different pairs of outflow cannulas. Six simulations of different cannula pairs were performed, and data were analysed by a custom-made spreadsheet, which was able to predict the flow partition at different flow levels.
In all simulations, the flow in the arterial cannula gradually increased differently depending on the cannula pair. The best cannula pair was a 19-Fr/18-cm arterial with a 17-Fr/50-cm venous cannula, where we observed an equal flow split and acceptable flow into the arterial cannula at a lower flow rate of 4 L/min.
Our computational spreadsheet identifies the suitable cannula pairing set for correctly splitting the outlet blood flow into the arterial and venous return cannulas in a veno-venous arterial extracorporeal membrane oxygenation configuration without the use of external throttles. Several limitations were reported regarding fixed aortic impedance, central venous pressure and the types of cannulas tested; therefore, further studies are mandatory to confirm our findings.
静脉-静脉-动脉体外膜肺氧合是一种将静脉-静脉和静脉-动脉体外膜肺氧合相结合的混合式体外膜肺氧合方式。它可应用于呼吸和心肺循环衰竭的患者。
描述一个关于静脉-静脉-动脉体外膜肺氧合离体实验模型的计算电子表格,以确定在单个泵驱动回路中套管对的回流情况。
我们开发了一种具有单个泵和两个流出套管的静脉-静脉-动脉体外膜肺氧合离体模型,并用葡萄糖溶液模拟血液特征。我们维持固定的主动脉阻抗和生理肺阻力。在测试不同的流出套管对时收集流量和压力数据。进行了六组不同套管对的模拟,并通过定制的电子表格分析数据,该表格能够预测不同流量水平下的流量分配。
在所有模拟中,动脉套管中的流量根据套管对的不同而逐渐以不同方式增加。最佳套管对是19F/18cm的动脉套管与17F/50cm的静脉套管,在4L/min的较低流量下,我们观察到流量均分且动脉套管中的流量可接受。
我们的计算电子表格确定了合适的套管配对组合,可在不使用外部节流装置的情况下,将静脉-静脉-动脉体外膜肺氧合配置中的流出血流正确分流到动脉和静脉回流套管中。关于固定的主动脉阻抗、中心静脉压和测试的套管类型,报告了一些局限性;因此,需要进一步研究来证实我们的发现。