Suppr超能文献

INDEL 检测是精确基因组编辑的“阿喀琉斯之踵”:基因编辑诱导 INDEL 精确分析方法综述。

INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels.

机构信息

Copenhagen Center for Glycomics, Department of Odontology and Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.

Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.

出版信息

Nucleic Acids Res. 2020 Dec 2;48(21):11958-11981. doi: 10.1093/nar/gkaa975.

Abstract

Advances in genome editing technologies have enabled manipulation of genomes at the single base level. These technologies are based on programmable nucleases (PNs) that include meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) nucleases and have given researchers the ability to delete, insert or replace genomic DNA in cells, tissues and whole organisms. The great flexibility in re-designing the genomic target specificity of PNs has vastly expanded the scope of gene editing applications in life science, and shows great promise for development of the next generation gene therapies. PN technologies share the principle of inducing a DNA double-strand break (DSB) at a user-specified site in the genome, followed by cellular repair of the induced DSB. PN-elicited DSBs are mainly repaired by the non-homologous end joining (NHEJ) and the microhomology-mediated end joining (MMEJ) pathways, which can elicit a variety of small insertion or deletion (indel) mutations. If indels are elicited in a protein coding sequence and shift the reading frame, targeted gene knock out (KO) can readily be achieved using either of the available PNs. Despite the ease by which gene inactivation in principle can be achieved, in practice, successful KO is not only determined by the efficiency of NHEJ and MMEJ repair; it also depends on the design and properties of the PN utilized, delivery format chosen, the preferred indel repair outcomes at the targeted site, the chromatin state of the target site and the relative activities of the repair pathways in the edited cells. These variables preclude accurate prediction of the nature and frequency of PN induced indels. A key step of any gene KO experiment therefore becomes the detection, characterization and quantification of the indel(s) induced at the targeted genomic site in cells, tissues or whole organisms. In this survey, we briefly review naturally occurring indels and their detection. Next, we review the methods that have been developed for detection of PN-induced indels. We briefly outline the experimental steps and describe the pros and cons of the various methods to help users decide a suitable method for their editing application. We highlight recent advances that enable accurate and sensitive quantification of indel events in cells regardless of their genome complexity, turning a complex pool of different indel events into informative indel profiles. Finally, we review what has been learned about PN-elicited indel formation through the use of the new methods and how this insight is helping to further advance the genome editing field.

摘要

基因组编辑技术的进步使人们能够在单个碱基水平上对基因组进行操作。这些技术基于可编程核酸酶 (PN),包括 meganucleases、锌指核酸酶 (ZFNs)、转录激活因子样效应核酸酶 (TALENs) 和成簇规律间隔短回文重复序列 (CRISPR)/CRISPR 相关 9 (Cas9) 核酸酶,使研究人员能够在细胞、组织和整个生物体中删除、插入或替换基因组 DNA。PN 基因组靶特异性的重新设计具有极大的灵活性,极大地扩展了基因编辑在生命科学中的应用范围,并为下一代基因治疗的发展带来了巨大的希望。PN 技术的原理是在基因组的用户指定位置诱导双链 DNA 断裂 (DSB),然后通过细胞修复诱导的 DSB。PN 诱导的 DSB 主要通过非同源末端连接 (NHEJ) 和微同源介导的末端连接 (MMEJ) 途径修复,该途径可引起多种小的插入或缺失 (indel) 突变。如果在蛋白质编码序列中诱导 indel 并改变阅读框,则可以使用现有的任何一种 PN 轻松实现靶向基因敲除 (KO)。尽管从理论上讲,基因失活很容易实现,但实际上,成功的 KO 不仅取决于 NHEJ 和 MMEJ 修复的效率;它还取决于所使用的 PN 的设计和特性、选择的传递格式、靶向位点的首选 indel 修复结果、靶向位点的染色质状态以及编辑细胞中修复途径的相对活性。这些变量排除了对 PN 诱导的 indel 的性质和频率进行准确预测的可能性。因此,任何基因 KO 实验的关键步骤都是在细胞、组织或整个生物体中靶向基因组位点检测、表征和量化诱导的 indel。在本综述中,我们简要回顾了自然发生的 indel 及其检测方法。接下来,我们回顾了用于检测 PN 诱导的 indel 的方法。我们简要概述了实验步骤,并描述了各种方法的优缺点,以帮助用户为其编辑应用选择合适的方法。我们强调了最近的进展,这些进展使人们能够无论其基因组复杂性如何,都能准确和敏感地定量细胞中的 indel 事件,从而将复杂的不同 indel 事件池转化为有意义的 indel 图谱。最后,我们回顾了通过使用新方法了解到的关于 PN 诱导的 indel 形成的信息,以及这些见解如何帮助进一步推进基因组编辑领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/498d/7708060/b7f8944426ce/gkaa975fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验